Functions and Integer Double Pointer

In this section, you are going to learn

What are the calling conventions of integer double dimension array ?

Call by Value

Call by Reference

int **dp;

Consider a integer double dimension array

int **dp;

Let us answer few basic questions about integer double pointer

If fun(x) is the function call, then fun(typeof(x)) is the prototype / definition

Function Call

Function Definition

Observations

fun(dp[0][0])

void fun(int x) {}

  • Call by Value

fun(dp[1][0])

void fun(int x) {}

  • Call by Value

fun(dp[2][0])

void fun(int x) {}

  • Call by Value

fun(&dp[0][0])

void fun(int *p) { }

  • Call by Reference

fun(&dp[1][0])

void fun(int *p) { }

  • Call by Reference

fun(&dp[2][0])

void fun(int *p) { }

  • Call by Reference

fun(**dp)

void fun(int x) {}

  • Call by Value

fun(*(*(dp + 1) + 0))

void fun(int x) {}

  • Call by Value

fun(*(*(dp + 2) + 0))

void fun(int x) {}

  • Call by Value

fun(dp[0])

void fun(int *p) { }

  • Call by Reference

fun(dp[1])

void fun(int *p) { }

  • Call by Reference

fun(dp[2])

void fun(int *p) { }

  • Call by Reference

fun(&dp[0])

void fun(int **q) { }

  • Call by Reference

fun(*dp)

void fun(int *p) { }

  • Call by Reference

fun(*(dp + 1))

void fun(int *p) { }

  • Call by Reference

fun(*(dp + 2))

void fun(int *p) { }

  • Call by Reference

fun(dp)

void fun(int **q) { }

  • Call by Reference

fun(&dp)

void fun(int ***r) { }

  • Call by Reference

Let us understand the reason behind above prototypes !

If Declaration has two dereference operators, and

  • Expression has two dereference operators [] [], and

  • Expression does not have &

  • then it is call by value

If Declaration has two dereference operators, and

  • Expression has two dereference operators * *, and

  • Expression does not have &

  • then it is call by value

If Declaration has two dereference operators, and

  • Expression has two dereference operators * [ ], and

  • Expression does not have &

  • then it is call by value

Let us look at examples

  • Step 1 : Consider a double dimension array created using a integer double pointer

int **dp;

dp = malloc(2 * sizeof(int *));

for (int i = 0; i < 2; i++)
{
        dp[i] = malloc(3 * sizeof(int));
}

dp[0][0] = 11;
dp[0][1] = 22;
dp[0][2] = 33;
dp[1][0] = 44;
dp[1][1] = 55;
dp[1][2] = 66;

Condition 1 : Declaration has TWO dereference operators * and *

  • Step 2 : Consider an expression dp[1][1]

Condition 2 : Expression has TWO dereference operators [ ] and [ ]

Note : [ ] and * are dereference operators

Condition 3 : Expression DOES NOT have & operator

Hence dp[1][1] is Call By Value

  • Step 1 : Consider a double dimension array created using a integer double pointer

int **dp;

dp = malloc(2 * sizeof(int *));

for (int i = 0; i < 2; i++)
{
        dp[i] = malloc(3 * sizeof(int));
}

dp[0][0] = 11;
dp[0][1] = 22;
dp[0][2] = 33;
dp[1][0] = 44;
dp[1][1] = 55;
dp[1][2] = 66;

Condition 1 : Declaration has TWO dereference operators [ ] and [ ]

  • Step 2 : Consider an expression **dp

Condition 2 : Expression has TWO dereference operators * and *

Note : [ ] and * are dereference operators

Condition 3 : Expression DOES NOT have & operator

Hence **dp is Call By Value

If Declaration has two dereference operators, and

  • Expression has two dereference operators [] [] or * * or [] *, and

  • Expression has &

  • then it is call by reference

  • Example : &dp[0][0]

If Declaration has two dereference operators, and

  • Expression has one dereference operator [ ] or *

  • then it is call by reference

  • Example : &dp[0], dp[0], *dp

If Declaration has two dereference operators, and

  • Expression has zero dereference operators, and

  • then it is call by reference

  • Example : dp, &dp

  • Step 1 : Consider a double dimension array created using a integer double pointer

int **dp;

dp = malloc(2 * sizeof(int *));

for (int i = 0; i < 2; i++)
{
        dp[i] = malloc(3 * sizeof(int));
}

dp[0][0] = 11;
dp[0][1] = 22;
dp[0][2] = 33;
dp[1][0] = 44;
dp[1][1] = 55;
dp[1][2] = 66;

Condition 1 : Declaration has TWO dereference operators [ ] and [ ]

Condition 2 : Expression has TWO dereference operators * and *

Note : [ ] and * are dereference operators

Condition 3 : Expression has & operator

  • Step 2 : Consider an expression &dp[1][1]

Hence &dp[1][1] is Call By Reference

  • Step 1 : Consider a double dimension array created using a integer double pointer

int **dp;

dp = malloc(2 * sizeof(int *));

for (int i = 0; i < 2; i++)
{
        dp[i] = malloc(3 * sizeof(int));
}

dp[0][0] = 11;
dp[0][1] = 22;
dp[0][2] = 33;
dp[1][0] = 44;
dp[1][1] = 55;
dp[1][2] = 66;

Condition 1 : Declaration has TWO dereference operators [ ] and [ ]

  • Step 2 : Consider an expression dp[1]

Condition 2 : Expression has ONE dereference operators

Note : [ ] and * are dereference operators

Condition 3 : Expression DOES NOT have & operator

Hence dp[1] is Call By Reference

Let us look at examples of Call by Value

  • Step 1 : Consider a double dimension array created using a integer double pointer

int **dp;

dp = malloc(2 * sizeof(int *));

for (int i = 0; i < 2; i++)
{
        dp[i] = malloc(3 * sizeof(int));
}

dp[0][0] = 11;
dp[0][1] = 22;
dp[0][2] = 33;
dp[1][0] = 44;
dp[1][1] = 55;
dp[1][2] = 66;
  • Step 2 : Pass dp[0][0], dp[1][0], dp[1][1] to a function fun

fun(dp[0][0]);

fun(dp[1][0]);

fun(dp[1][1]);
  • Step 3 : Define function fun

void fun(int c)
{
        c = 99;
}
  • Step 4 : Note that it is call by Value for below reason

Condition 1 : Declaration has TWO dereference operators [ ] and [ ]

Condition 2 : Expression has TWO dereference operators [ ] and [ ]

Condition 3 : Expression DOES NOT have & operator

Means changing value of integer inside function DOES NOT affect value of integer in Caller !

  • Step 5 : Free memory after use

for (int i = 0; i < 2; i++)
{
        free(dp[i]);
}

free(dp);
  • See full program below

#include <stdio.h>
#include <stdlib.h>

void fun(int c)
{
        c = 99;
}

int main(void)
{
        int **dp;

        dp = malloc(2 * sizeof(int *));

        for (int i = 0; i < 2; i++)
        {
                dp[i] = malloc(3 * sizeof(int));
        }

        dp[0][0] = 11;
        dp[0][1] = 22;
        dp[0][2] = 33;
        dp[1][0] = 44;
        dp[1][1] = 55;
        dp[1][2] = 66;

        printf("----- Before Call By Value -----\n");

        printf("dp[0][0] = %d\n", dp[0][0]);
        printf("dp[1][0] = %d\n", dp[1][0]);
        printf("dp[1][1] = %d\n", dp[1][1]);

        fun(dp[0][0]);
        fun(dp[1][0]);
        fun(dp[1][1]);

        printf("----- After Call By Value -----\n");

        printf("dp[0][0] = %d\n", dp[0][0]);
        printf("dp[1][0] = %d\n", dp[1][0]);
        printf("dp[1][1] = %d\n", dp[1][1]);

        for (int i = 0; i < 2; i++)
        {
                free(dp[i]);
        }

        free(dp);

        return 0;
}
  • Output is as below

----- Before Call By Value -----
dp[0][0] = 11
dp[1][0] = 44
dp[1][1] = 55

----- After Call By Value -----
dp[0][0] = 11
dp[1][0] = 44
dp[1][1] = 55
  • Step 1 : Consider a double dimension array created using a integer double pointer

int **dp;

dp = malloc(2 * sizeof(int *));

for (int i = 0; i < 2; i++)
{
        dp[i] = malloc(3 * sizeof(int));
}

dp[0][0] = 11;
dp[0][1] = 22;
dp[0][2] = 33;
dp[1][0] = 44;
dp[1][1] = 55;
dp[1][2] = 66;
  • Step 2 : Pass **dp, *(*(dp + 1) + 0), *(*(dp + 1) + 1) to a function fun

fun( **dp );

fun( *(*(dp + 1) + 0) );

fun( *(*(dp + 1) + 1) );
  • Step 3 : Define function fun

void fun(int c)
{
        c = 99;
}
  • Step 4 : Note that it is call by Value for below reason

Condition 1 : Declaration has TWO dereference operators [ ] and [ ]

Condition 2 : Expression has TWO dereference operators * and *

Condition 3 : Expression DOES NOT have & operator

Means changing value of integer inside function DOES NOT affect value of integer in Caller !

  • Step 5 : Free memory after use

for (int i = 0; i < 2; i++)
{
        free(dp[i]);
}

free(dp);
  • See full program below

#include <stdio.h>
#include <stdlib.h>

void fun(int c)
{
        c = 99;
}

int main(void)
{
        int **dp;

        dp = malloc(2 * sizeof(int *));

        for (int i = 0; i < 2; i++)
        {
                dp[i] = malloc(3 * sizeof(int));
        }

        dp[0][0] = 11;
        dp[0][1] = 22;
        dp[0][2] = 33;
        dp[1][0] = 44;
        dp[1][1] = 55;
        dp[1][2] = 66;

        printf("----- Before Call By Value -----\n");

        printf(" **dp = %d\n", **dp);
        printf(" *(*(dp + 1) + 0) = %d\n", *(*(dp + 1) + 0) );
        printf(" *(*(dp + 1) + 1) = %d\n", *(*(dp + 1) + 1) );

        fun( **dp );
        fun( *(*(dp + 1) + 0) );
        fun( *(*(dp + 1) + 1) );

        printf("----- After Call By Value -----\n");

        printf(" **dp = %d\n", **dp);
        printf(" *(*(dp + 1) + 0) = %d\n", *(*(dp + 1) + 0) );
        printf(" *(*(dp + 1) + 1) = %d\n", *(*(dp + 1) + 1) );

        for (int i = 0; i < 2; i++)
        {
                free(dp[i]);
        }

        free(dp);

        return 0;
}
  • Output is as below

----- Before Call By Value -----
 **dp = 11
 *(*(dp + 1) + 0) = 44
 *(*(dp + 1) + 1) = 55

----- After Call By Value -----
 **dp = 11
 *(*(dp + 1) + 0) = 44
 *(*(dp + 1) + 1) = 55

Let us look at examples of Call by Reference

  • Step 1 : Consider a double dimension array created using a integer double pointer

int **dp;

dp = malloc(2 * sizeof(int *));

for (int i = 0; i < 2; i++)
{
        dp[i] = malloc(3 * sizeof(int));
}

dp[0][0] = 11;
dp[0][1] = 22;
dp[0][2] = 33;
dp[1][0] = 44;
dp[1][1] = 55;
dp[1][2] = 66;

There are 2 single dimension arrays

  • dp[0]

  • dp[1]

dp[0] is also equal to *dp

dp[1] is also equal to *(dp + 1)

dp[0] is also equal to &dp[0][0]

dp[1] is also equal to &dp[1][0]

  • Step 2.1 : Method 1 : Pass &dp[0][0], &dp[1][0] to a function fun

fun( &dp[0][0] );

fun( &dp[1][0] );
  • Step 2.2 : Method 2 : Pass dp[0], dp[1] to a function fun

fun( dp[0] );

fun( dp[1] );
  • Step 2.3 : Method 3 : Pass *dp, *(dp + 1) to a function fun

fun( *dp );

fun( *(dp + 1) );
  • Step 3.1 : Define function fun

void fun(int *ptr)
{

}
  • Step 4 : Note that it is call by Reference. Means contents of single dimension array can be changed inside function fun

void fun(int *ptr)
{
        ptr[0] = 77;
        ptr[1] = 88;
        ptr[2] = 99;
}
  • Step 5 : Free memory after usage

for (int i = 0; i < 2; i++)
{
        free(dp[i]);
}

free(dp);
  • See full program below

#include <stdio.h>
#include <stdlib.h>

void fun(int *ptr)
{
        ptr[0] = 77;
        ptr[1] = 88;
        ptr[2] = 99;
}

int main(void)
{
        int **dp;

        dp = malloc(2 * sizeof(int *));

        for (int i = 0; i < 2; i++)
        {
                dp[i] = malloc(3 * sizeof(int));
        }

        dp[0][0] = 11;
        dp[0][1] = 22;
        dp[0][2] = 33;
        dp[1][0] = 44;
        dp[1][1] = 55;
        dp[1][2] = 66;

        printf("----- Before Call By Reference -----\n");

        for (int i = 0; i < 2; i++)
        {
                for (int j = 0; j < 3; j++)
                {
                        printf("dp[%d][%d] = %d\n", i, j, dp[i][j]);
                }
        }

        // Method 1 : Access Single dimension arrays

        fun( &dp[0][0] );
        fun( &dp[1][0] );

        // Method 2 : Access Single dimension arrays

        fun( dp[0] );
        fun( dp[1] );

        // Method 3 : Access Single dimension arrays

        fun( *dp );
        fun( *(dp + 1) );

        printf("----- After Call By Reference -----\n");

        for (int i = 0; i < 2; i++)
        {
                for (int j = 0; j < 3; j++)
                {
                        printf("dp[%d][%d] = %d\n", i, j, dp[i][j]);
                }
        }

        for (int i = 0; i < 2; i++)
        {
                free(dp[i]);
        }

        free(dp);

        return 0;
}
  • Output is as below

----- Before Call By Reference -----
dp[0][0] = 11
dp[0][1] = 22
dp[0][2] = 33
dp[1][0] = 44
dp[1][1] = 55
dp[1][2] = 66

----- After Call By Reference -----
dp[0][0] = 77
dp[0][1] = 88
dp[0][2] = 99
dp[1][0] = 77
dp[1][1] = 88
dp[1][2] = 99
  • Step 1 : Consider a double dimension array created using a integer double pointer

int **dp;

dp = malloc(2 * sizeof(int *));

for (int i = 0; i < 2; i++)
{
        dp[i] = malloc(3 * sizeof(int));
}

dp[0][0] = 11;
dp[0][1] = 22;
dp[0][2] = 33;
dp[1][0] = 44;
dp[1][1] = 55;
dp[1][2] = 66;
  • Step 2 : Pass Address of Double Dimension array to a function

fun(&dp);
  • Step 3.1 : Define function fun

void fun(int ***ptr )
{

}
  • Step 3.2 : Access and change individual integers inside function fun

int data = 99;

for (int i = 0 ; i < 2; i++) {
        for (int j = 0 ; j < 3; j++) {
                (*ptr)[i][j] = data++;
        }
}
  • Step 4 : Free memory after usage

for (int i = 0; i < 2; i++)
{
        free(dp[i]);
}

free(dp);
  • See full program below

#include <stdio.h>
#include <stdlib.h>

void fun(int ***ptr)
{
        int data = 99;

        for (int i = 0 ; i < 2; i++) {
                for (int j = 0 ; j < 3; j++) {
                        (*ptr)[i][j] = data++;
                }
        }
}

int main(void)
{
        int **dp;

        dp = malloc(2 * sizeof(int *));

        for (int i = 0; i < 2; i++)
        {
                dp[i] = malloc(3 * sizeof(int));
        }

        dp[0][0] = 11;
        dp[0][1] = 22;
        dp[0][2] = 33;
        dp[1][0] = 44;
        dp[1][1] = 55;
        dp[1][2] = 66;

        printf("----- Before Call By Reference -----\n");

        for (int i = 0; i < 2; i++)
        {
                for (int j = 0; j < 3; j++)
                {
                        printf("dp[%d][%d] = %d\n", i, j, dp[i][j]);
                }
        }

        fun(&dp);

        printf("----- After Call By Reference -----\n");

        for (int i = 0; i < 2; i++)
        {
                for (int j = 0; j < 3; j++)
                {
                        printf("dp[%d][%d] = %d\n", i, j, dp[i][j]);
                }
        }

        for (int i = 0; i < 2; i++)
        {
                free(dp[i]);
        }

        free(dp);

        return 0;
}
  • Output is as below

----- Before Call By Reference -----
dp[0][0] = 11
dp[0][1] = 22
dp[0][2] = 33
dp[1][0] = 44
dp[1][1] = 55
dp[1][2] = 66

----- After Call By Reference -----
dp[0][0] = 99
dp[0][1] = 100
dp[0][2] = 101
dp[1][0] = 102
dp[1][1] = 103
dp[1][2] = 104