Equations of Structure Double Pointer

In this section, you are going to learn

What are the different ways of declarations ?

How to dervie equations ?

What are the Properties of Variable ?

What are the Properties of Expression ?

1. Equations of Double Pointer

In this section, you are going to learn

  • How to derive pointer equations for Double pointer ?

  • How to apply these equations to understand C statements ?

You can derive equations looking at C declarations !

There are many methods in C, using which a Double pointer can be declared. See below

 1#include <stdio.h>
 2
 3struct ABC
 4{
 5        int a;
 6        int b;
 7        int c;
 8};
 9
10int main(void)
11{
12        struct ABC x = {.a = 1, .b = 2, .c = 3}, *p = &x, **q = &p;
13
14        printf("x.a = %d\n", x.a);
15        printf("x.b = %d\n", x.b);
16        printf("x.c = %d\n", x.c);
17
18        printf("(**q).a = %d\n", (**q).a);
19        printf("(**q).b = %d\n", (**q).b);
20        printf("(**q).c = %d\n", (**q).c);
21
22        printf("(*q)[0].a = %d\n", (*q)[0].a);
23        printf("(*q)[0].b = %d\n", (*q)[0].b);
24        printf("(*q)[0].c = %d\n", (*q)[0].c);
25
26        printf("(*q)->a = %d\n", (*q)->a);
27        printf("(*q)->b = %d\n", (*q)->b);
28        printf("(*q)->c = %d\n", (*q)->c);
29
30        printf("q[0][0].a = %d\n", q[0][0].a);
31        printf("q[0][0].b = %d\n", q[0][0].b);
32        printf("q[0][0].c = %d\n", q[0][0].c);
33
34        return 0;
35}
  • Output is as below

x.a = 1
x.b = 2
x.c = 3

(**q).a = 1
(**q).b = 2
(**q).c = 3

(*q)[0].a = 1
(*q)[0].b = 2
(*q)[0].c = 3

(*q)->a = 1
(*q)->b = 2
(*q)->c = 3

q[0][0].a = 1
q[0][0].b = 2
q[0][0].c = 3
In this example,
  • x is a structure

  • p is an single structure pointer

  • q is an double structure pointer

  • x, p, q are declared in one Single Line

  • x, p, q are assigned in one Single Line

  • x is assigned with value 10

  • p is assigned with address of x

  • q is assigned with address of p

 1#include <stdio.h>
 2
 3struct ABC
 4{
 5        int a;
 6        int b;
 7        int c;
 8};
 9
10int main(void)
11{
12        struct ABC x = {.a = 1, .b = 2, .c = 3};
13        struct ABC *p = &x;
14        struct ABC **q = &p;
15
16        printf("x.a = %d\n", x.a);
17        printf("x.b = %d\n", x.b);
18        printf("x.c = %d\n", x.c);
19
20        printf("(**q).a = %d\n", (**q).a);
21        printf("(**q).b = %d\n", (**q).b);
22        printf("(**q).c = %d\n", (**q).c);
23
24        printf("(*q)[0].a = %d\n", (*q)[0].a);
25        printf("(*q)[0].b = %d\n", (*q)[0].b);
26        printf("(*q)[0].c = %d\n", (*q)[0].c);
27
28        printf("(*q)->a = %d\n", (*q)->a);
29        printf("(*q)->b = %d\n", (*q)->b);
30        printf("(*q)->c = %d\n", (*q)->c);
31
32        printf("q[0][0].a = %d\n", q[0][0].a);
33        printf("q[0][0].b = %d\n", q[0][0].b);
34        printf("q[0][0].c = %d\n", q[0][0].c);
35
36        return 0;
37}
  • Output is as below

x.a = 1
x.b = 2
x.c = 3

(**q).a = 1
(**q).b = 2
(**q).c = 3

(*q)[0].a = 1
(*q)[0].b = 2
(*q)[0].c = 3

(*q)->a = 1
(*q)->b = 2
(*q)->c = 3

q[0][0].a = 1
q[0][0].b = 2
q[0][0].c = 3
In this example,
  • x is a structure

  • p is a single structure pointer

  • q is a double structure pointer

  • x is declared in a separate line

  • p is declared in a separate line

  • q is declared in a separate line

  • x is assigned in the same line of declaration

  • p is assigned in the same line of declaration

  • q is assigned in the same line of declaration

  • x is assigned with value 10

  • p is assigned with address of x

  • q is assigned with address of p

 1#include <stdio.h>
 2
 3struct ABC
 4{
 5        int a;
 6        int b;
 7        int c;
 8};
 9
10int main(void)
11{
12        struct ABC x;
13        struct ABC *p;
14        struct ABC **q;
15
16        x.a = 1;
17        x.b = 2;
18        x.c = 3;
19
20        p = &x;
21
22        q = &p;
23
24        printf("x.a = %d\n", x.a);
25        printf("x.b = %d\n", x.b);
26        printf("x.c = %d\n", x.c);
27
28        printf("(**q).a = %d\n", (**q).a);
29        printf("(**q).b = %d\n", (**q).b);
30        printf("(**q).c = %d\n", (**q).c);
31
32        printf("(*q)[0].a = %d\n", (*q)[0].a);
33        printf("(*q)[0].b = %d\n", (*q)[0].b);
34        printf("(*q)[0].c = %d\n", (*q)[0].c);
35
36        printf("(*q)->a = %d\n", (*q)->a);
37        printf("(*q)->b = %d\n", (*q)->b);
38        printf("(*q)->c = %d\n", (*q)->c);
39
40        printf("q[0][0].a = %d\n", q[0][0].a);
41        printf("q[0][0].b = %d\n", q[0][0].b);
42        printf("q[0][0].c = %d\n", q[0][0].c);
43
44        return 0;
45}
  • Output is as below

x.a = 1
x.b = 2
x.c = 3

(**q).a = 1
(**q).b = 2
(**q).c = 3

(*q)[0].a = 1
(*q)[0].b = 2
(*q)[0].c = 3

(*q)->a = 1
(*q)->b = 2
(*q)->c = 3

q[0][0].a = 1
q[0][0].b = 2
q[0][0].c = 3
In this example,
  • x is a structure

  • p is a single structure pointer

  • q is a double structure pointer

  • x is declared in a separate line

  • p is declared in a separate line

  • q is declared in a separate line

  • x is assigned and is not part of declaration

  • p is assigned and is not part of declaration

  • q is assigned and is not part of declaration

  • x is assigned with value 10

  • p is assigned with address of x

  • q is assigned with address of p

Decl #

Declaration

Description

Decl 1

  • struct ABC x, *p = &x, **q = &p;

Structure x, Single Pointer p, Double Pointer q are declared and assigned in same line

Decl 2

  • struct ABC x;

  • struct ABC *p = &x;

  • struct ABC **q = &p;

Structure x, Single Pointer p, Double Pointer q are declared and assigned in separate lines

Decl 3

  • struct ABC x;

  • struct ABC *p;

  • struct ABC **q;
    • x.a = 1;

    • x.b = 2;

    • x.c = 3;

  • p = &x;

  • q = &p;

Structure x, Single Pointer p, Double Pointer q are declared in one line and assigned in another line

  • Whenever we see any of the above methods of declarations, we need to rewrite them such that, declarations and assignments are not in same line. Similar to Declaration 3

  • Equation 1 : Obtained from Step 2

p = &x;
  • Equation 2 : Move & to the left of First Equation. It turns in to *

*p = x;
  • Equation 3 : * and [0] can be used interchangeably. Hence *p and p[0] are one and the same !

p[0] = x;
  • Equation 4 : From Equation 2, Equation 3, we can derive that x, *p, p[0] all are same !

*p = p[0] = x;
  • Equation 5 : Obtained from Step 2

q = &p;
  • Equation 6 : Move & to the left of First Equation. It turns in to *

*q = p;
  • Equation 7 : * and [0] can be used interchangeably. Hence *q and q[0] are one and the same !

q[0] = p;
  • Equation 8 : From Equation 6, Equation 7, we can derive that p, *q, q[0] all are same !

*q = q[0] = p;
  • Equation 9 : From Equation 1, we know p = &x. Hence Replace p with &x in Equation 8

*q = q[0] = &x;
  • Equation 10 : Move & to the left of Equation 9. It turns in to *

**q = *q[0] = x;
  • Equation 11 : * and [0] can be used interchangeably

q[0][0] = x;

Equation #

Equation

Description

Equation 1

p = &x

Base condition

Equation 2

*p = x

From Equation 1, Move & from RHS to LHS to get * on LHS

Equation 3

p[0] = x

* and [0] can be used interchangeably. Hence *p and p[0] are synonyms

Equation 4

*p = p[0] = x

From Equation 2, 3 we can conclude *p, p[0], x are synonyms

Equation #

Equation

Description

Equation 5

q = &p

Base condition

Equation 6

*q = p

From Equation 5, Move & from RHS to LHS to get * on LHS

Equation 7

q[0] = p

* and [0] can be used interchangeably. Hence *q and q[0] are synonyms

Equation 8

*q = q[0] = p

From Equation 6, Equation 7, we can derive that p, *q, q[0] all are same !

Equation 9

*q = q[0] = &x

From Equation 1, we know p = &x. Hence Replace p with &x in Equation 8

Equation 10

**q = *q[0] = x

From Equation 9, Move & from RHS to LHS to get * on LHS

Equation 11

q[0][0] = x

* and [0] can be used interchangeably

(*p).a = 10;
(*p).b = 20;
(*p).c = 30;

printf("(*p).a = %d\n", (*p).a);
printf("(*p).b = %d\n", (*p).b);
printf("(*p).c = %d\n", (*p).c);

Output is as below

(*p).a = 10
(*p).b = 20
(*p).c = 30
p[0].a = 10;
p[0].b = 20;
p[0].c = 30;

printf("p[0].a = %d\n", p[0].a);
printf("p[0].b = %d\n", p[0].b);
printf("p[0].c = %d\n", p[0].c);

Output is as below

p[0].a = 10
p[0].b = 20
p[0].c = 30
x.a = 100;

printf("x.a = %d\n", x.a);
printf("(*p).a = %d\n", (*p).a);
printf("p[0].a = %d\n", p[0].a);
printf("p->a = %d\n", p->a);

Output is as below

x.a    = 100
(*p).a = 100
p[0].a = 100
p->a   = 100
p->a = 10;
p->b = 20;
p->c = 30;

printf("p->a = %d\n", p->a);
printf("p->b = %d\n", p->b);
printf("p->c = %d\n", p->c);

Output is as below

p->a = 10
p->b = 20
p->c = 30
(**q).a = 100;

printf("x.a = %d, (**q).a = %d\n", x.a, (**q).a);
Output :

x.a = 100, (**q).a = 100

(*q)[0].a = 100;

printf("x.a = %d, (*q)[0].a = %d\n", x.a, (*q)[0].a);
Output :

x.a = 100, (*q)[0].a = 100

q[0][0].a = 100;

printf("x.a = %d, q[0][0].a = %d\n", x.a, q[0][0].a);
Output :

x.a = 100, q[0][0].a = 100

struct ABC x, y, *p, **q;

x.a = 100;
p = &x;
q = &p;

printf("(*p).a = %d, p[0].a = %d, (**q).a = %d\n", (*p).a, p[0].a, (**q).a);

y.a = 200;

// *q, p are synonyms.
// Means *q = &y also means p = &y
*q = &y;

printf("(*p).a = %d, p[0].a = %d, (**q).a = %d\n", (*p).a, p[0].a, (**q).a);
Output :

(*p).a = 100, p[0].a = 100, (**q).a = 100

(*p).a = 200, p[0].a = 200, (**q).a = 200

struct ABC x, y, *p, **q;

x.a = 100;
p = &x;
q = &p;

printf("(*p).a = %d, p[0].a = %d, (**q).a = %d\n", (*p).a, p[0].a, (**q).a);

y.a = 200;

// q[0], p are synonyms.
// Means q[0] = &y also means p = &y
q[0] = &y;

printf("(*p).a = %d, p[0].a = %d, (**q).a = %d\n", (*p).a, p[0].a, (**q).a);
Output :

(*p).a = 100, p[0].a = 100, (**q).a = 100

(*p).a = 200, p[0].a = 200, (**q).a = 200

 1#include <stdio.h>
 2
 3struct ABC
 4{
 5        int a;
 6        int b;
 7        int c;
 8};
 9
10int main(void)
11{
12        struct ABC x;
13
14        struct ABC *p;
15
16        struct ABC **q;
17
18        x.a = 10;
19
20        p = &x;
21
22        q = &p;
23
24        printf("x.a = %d, (*p).a = %d, p[0].a = %d, (**q).a = %d\n", x.a, (*p).a, p[0].a, (**q).a);
25
26        x.a = 20;
27
28        printf("x.a = %d, (*p).a = %d, p[0].a = %d, (**q).a = %d\n", x.a, (*p).a, p[0].a, (**q).a);
29
30        (*p).a = 30;
31
32        printf("x.a = %d, (*p).a = %d, p[0].a = %d, (**q).a = %d\n", x.a, (*p).a, p[0].a, (**q).a);
33
34        p[0].a = 40;
35
36        printf("x.a = %d, (*p).a = %d, p[0].a = %d, (**q).a = %d\n", x.a, (*p).a, p[0].a, (**q).a);
37
38        (**q).a = 50;
39        printf("x.a = %d, (*p).a = %d, p[0].a = %d, (**q).a = %d\n", x.a, (*p).a, p[0].a, (**q).a);
40
41        return 0;
42}
  • Output is as below

x.a = 10, (*p).a = 10, p[0].a = 10, (**q).a = 10

x.a = 20, (*p).a = 20, p[0].a = 20, (**q).a = 20

x.a = 30, (*p).a = 30, p[0].a = 30, (**q).a = 30

x.a = 40, (*p).a = 40, p[0].a = 40, (**q).a = 40

x.a = 50, (*p).a = 50, p[0].a = 50, (**q).a = 50

2. Properties of a variable

In this section, you are going to learn

  • Properties of a variable

    • Type of a variable ?

    • Size of a variable ?

    • Scope, Lifetime and Memory of a variable ?

1struct ABC x;
2
3struct ABC *p;
4
5struct ABC **q;
6
7p = &x;
8
9q = &p;
  • In above code snippet, there are three variables x, p, q

Variable

Type

Description

type_of(x)

struct ABC

See Line 1

type_of(p)

struct ABC *

See Line 3

type_of(q)

struct ABC **

See Line 5

Adress of variable must be stored in next level pointer type always

1struct ABC x;
2
3struct ABC *p;
4
5struct ABC **q;
6
7p = &x;
8
9q = &p;
  • In above code snippet, there are two variables x, p

Variable

Type

Description

type_of(&x)

struct ABC *

  • type_of(x) is struct ABC

  • Hence, type_of(&x) is struct ABC *

type_of(&p)

struct ABC **

  • type_of(p) is struct ABC *

  • Hence, type_of(&p) is struct ABC **

type_of(&q)

struct ABC ***

  • type_of(q) is struct ABC **

  • Hence, type_of(&q) is struct ABC ***

Sizeof(type)

Size

sizeof(char)

1 Byte

sizeof(int)

4 Bytes

sizeof(float)

4 Bytes

sizeof(double)

8 Bytes

sizeof(pointer types) is always 8 Bytes, where pointer is single, double, triple etc.,:

Sizeof(type *)

Size

sizeof(char *)

8 Bytes

sizeof(int *)

8 Bytes

sizeof(float *)

8 Bytes

sizeof(double *)

8 Bytes

sizeof(struct xyz *)

8 Bytes

sizeof(union xyz *)

8 Bytes

Sizeof(type **)

Size

sizeof(char **)

8 Bytes

sizeof(int **)

8 Bytes

sizeof(float **)

8 Bytes

sizeof(double **)

8 Bytes

sizeof(struct xyz **)

8 Bytes

sizeof(union xyz **)

8 Bytes

etc.,

sizeof(&variable) is always 8 Bytes, where type_of(variable) can be anything

Sizeof(&variable)

Size

Declaration

sizeof(&x)

8 Bytes

char x;

sizeof(&x)

8 Bytes

int x;

sizeof(&x)

8 Bytes

float x;

sizeof(&x)

8 Bytes

double x;

sizeof(&x)

8 Bytes

struct xyz x;

sizeof(&x)

8 Bytes

union xyz x;

Sizeof(&variable)

Size

Declaration

sizeof(&x)

8 Bytes

char *x;

sizeof(&x)

8 Bytes

int *x;

sizeof(&x)

8 Bytes

float *x;

sizeof(&x)

8 Bytes

double *x;

sizeof(&x)

8 Bytes

struct xyz *x;

sizeof(&x)

8 Bytes

union xyz *x;

Sizeof(&variable)

Size

Declaration

sizeof(&x)

8 Bytes

char **x;

sizeof(&x)

8 Bytes

int **x;

sizeof(&x)

8 Bytes

float **x;

sizeof(&x)

8 Bytes

double **x;

sizeof(&x)

8 Bytes

struct xyz **x;

sizeof(&x)

8 Bytes

union xyz **x;

sizeof(variable) equals sizeof(typeof(variable))

1struct ABC x;
2
3struct ABC *p;
4
5struct ABC **q;
6
7p = &x;
8
9q = &p;
  • In above code snippet, there are three variables x, p, q

Sizeof(Variable)

Size

Description

sizeof(x)

12 Bytes

  • How ?
    • Step 1 : sizeof(x) equals sizeof(typeof(x))

    • Step 2 : type_of(x) is struct ABC

    • Step 3 : sizeof(struct ABC) is 12 Bytes

    • Hence, sizeof(x) is 12 Bytes

sizeof(p)

8 Bytes

  • How ?
    • Step 1 : sizeof(p) equals sizeof(typeof(p))

    • Step 2 : type_of(p) is struct ABC *

    • Step 3 : sizeof(struct ABC *) is 8 Bytes

    • Hence, sizeof(p) is 8 Bytes

sizeof(q)

8 Bytes

  • How ?
    • Step 1 : sizeof(q) equals sizeof(typeof(q))

    • Step 2 : type_of(q) is struct ABC **

    • Step 3 : sizeof(struct ABC **) is 8 Bytes

    • Hence, sizeof(q) is 8 Bytes

  • Global Scope and Lifetime.

  • Local Scope and Lifetime

3. Properties of Expressions

In this section, you are going to learn

  • Properties of Expressions

    • What is an Expression ?

    • Table of Expressions

    • Table of Size (for Expressions)

    • Table of Type (for Expressions)

    • Table of Address/Value (for Expression)

    • Table of Function Prototype (for Expression)

 1struct ABC x;
 2
 3struct ABC *p;
 4
 5struct ABC **q;
 6
 7p = &x;
 8
 9q = &p;
10
11(*p).a = 100;    // or p->a = 100;
12
13(**q).a = 100;   // or (*q)->a = 100;

Expression

Description

x

  • x is a structure

&x

  • &x is address of a structure

  • &x is a single pointer

p

  • p is a pointer to a structure

  • p is a single pointer

&p

  • &p is address of a pointer

  • &p is a double pointer

*p

p[0]

q

  • q is a double pointer and holds the address of a single pointer

&q

  • &q is address of a double pointer

  • &q is a triple pointer

*q

q[0]

**q

*q[0]

q[0][0]

Expression

Size

Description

sizeof(x)

12 Bytes

sizeof(&x)

8 Bytes

sizeof(p)

8 Bytes

sizeof(&p)

8 Bytes

sizeof(*p)

12 Bytes

  • Step 1 : sizeof(*p) equals sizeof(x) See Equation 2

  • Step 2 : sizeof(x) equals sizeof(type_of(x)) See Property 2.4

  • Step 3 : sizeof(type_of(x)) equals sizeof(struct ABC) See Property 1.1

  • Step 4 : sizeof(struct ABC) equals 12 Bytes

sizeof(p[0])

12 Bytes

  • Step 1 : sizeof(p[0]) equals sizeof(x)``= x See Equation 3

  • Step 2 : sizeof(x) equals sizeof(type_of(x)) See Property 2.4

  • Step 3 : sizeof(type_of(x)) equals sizeof(struct ABC) See Property 1.1

  • Step 4 : sizeof(struct ABC) equals 12 Bytes

sizeof(q)

8 Bytes

sizeof(&q)

8 Bytes

sizeof(*q)

8 Bytes

  • Step 1 : sizeof(*q) equals sizeof(p). See Equation 8

  • Step 2 : sizeof(p), equals sizeof(type_of(p)) See Property 2.4

  • Step 3 : sizeof(type_of(p)) equals sizeof(struct ABC *) See Property 1.1

  • Step 4 : sizeof(struct ABC *) equals 8 Bytes

sizeof(q[0])

8 Bytes

  • Step 1 : sizeof(q[0]) equals sizeof(p) See Equation 8

  • Step 2 : sizeof(p) equals sizeof(type_of(p)) See Property 2.4

  • Step 3 : sizeof(type_of(p)) equals sizeof(struct ABC *) See Property 1.1

  • Step 4 : sizeof(struct ABC *) * equals 8 Bytes

sizeof(**q)

12 Bytes

sizeof(*q[0])

12 Bytes

sizeof(q[0][0])

12 Bytes

  • Step 1 : sizeof(q[0][0]) equals sizeof(x) See Equation 11

  • Step 2 : sizeof(x) equals sizeof(type_of(x)) See Property 2.4

  • Step 3 : sizeof(type_of(x)) equals sizeof(struct ABC) See Property 1.1

  • Step 4 : sizeof(struct ABC) equals 12 Bytes

Expression

Type

Description

type_of(x)

struct ABC

type_of(&x)

struct ABC *

type_of(p)

struct ABC *

type_of(&p)

struct ABC **

type_of(*p)

struct ABC

  • Step 1 : type_of(*p) equals type_of(x), because *p = x. See Equation 2

  • Step 2 : type_of(x) equals struct ABC

type_of(p[0])

struct ABC

  • Step 1 : type_of(p[0]) equals type_of(x), because p[0] = x. See Equation 3

  • Step 2 : type_of(x) equals struct ABC

type_of(q)

struct ABC **

type_of(&q)

struct ABC ***

type_of(*q)

struct ABC *

type_of(q[0])

struct ABC *

type_of(**q)

struct ABC

type_of(*q[0])

struct ABC

type_of(q[0][0])

struct ABC

Expression

Address/Value

Description

x

Value

  • Step 1 : x is a structure

  • Step 2 : Hence x is a value

&x

Address

  • & operator indicates address

p

Address

  • Step 1 : p = &x See Equation 1

  • Step 2 : & operator indicates address

&p

Address

  • & operator indicates address

*p

Value

  • Step 1 : *p is a structure. *p = x See Equation 2

  • Step 2 : Hence *p is a value

p[0]

Value

  • Step 1 : p[0] is a structure. p[0] = x See Equation 3

  • Step 2 : Hence p[0] is a value

q

Address

  • Step 1 : q = &p See Equation 5

  • Step 2 : & operator indicates address

&q

Address

  • & operator indicates address

*q

Address

  • Step 1 : *q = p See Equation 6

  • Step 2 : p = &x

  • Step 3 : & operator indicates address

q[0]

Address

  • Step 1 : q[0] = p See Equation 7

  • Step 2 : p = &x

  • Step 3 : & operator indicates address

**q

Value

  • Step 1 : **q = x See Equation 10

  • Step 2 : x is a structure

  • Step 3 : **q is a Value

*q[0]

Value

  • Step 1 : *q[0] = x See Equation 10

  • Step 2 : x is a structure

  • Step 3 : *q[0] is a Value

q[0][0]

Value

  • Step 1 : q[0][0] = x See Equation 11

  • Step 2 : x is a structure

  • Step 3 : q[0][0] is a Value

If fun(v) is function call then, fun(type_of(v)) is the prototype

Function call

Function Prototype

Description

fun(x)

void fun(struct ABC x);

fun(&x)

void fun(struct ABC *p);

fun(p)

void fun(struct ABC *p);

fun(&p)

void fun(struct ABC **p);

fun(*p)

void fun(struct ABC x);

  • Step 1 : fun(*p) equals fun(x)See Equation 2

  • Step 2 : fun(x) equals fun(type_of(x))

  • Step 3 : fun(type_of(x)) equals fun(struct ABC)

fun(p[0])

void fun(struct ABC x);

  • Step 1 : fun(p[0]) equals fun(x)See Equation 2

  • Step 2 : fun(x) equals fun(type_of(x))

  • Step 3 : fun(type_of(x)) equals fun(struct ABC)

fun(q)

void fun(struct ABC **q);

fun(&q)

void fun(struct ABC ***q);

fun(*q)

void fun(struct ABC *q);

  • Step 1 : fun(*q) equals fun(p)

  • Step 2 : fun(p) equals fun(type_of(p))

  • Step 3 : fun(type_of(p)) equals fun(struct ABC *)

fun(q[0])

void fun(struct ABC *q);

  • Step 1 : fun(q[0]) equals fun(p)

  • Step 2 : fun(p) equals fun(type_of(p))

  • Step 3 : fun(type_of(p)) equals fun(struct ABC *)

fun(**q)

void fun(struct ABC x);

  • Step 1 : fun(**q) equals fun(x) See Equation 10

  • Step 2 : fun(x) equals fun(type_of(x))

  • Step 3 : fun(type_of(x)) equals fun(struct ABC)

fun(*q[0])

void fun(struct ABC x);

  • Step 1 : fun(*q[0]) equals fun(x) See Equation 10

  • Step 2 : fun(x) equals fun(type_of(x))

  • Step 3 : fun(type_of(x)) equals fun(struct ABC)

fun(q[0][0])

void fun(struct ABC x);

  • Step 1 : fun(q[0][0]) equals fun(x) See Equation 11

  • Step 2 : fun(x) equals fun(type_of(x))

  • Step 3 : fun(type_of(x)) equals fun(struct ABC)

4. Summary

#

?

Size in Bytes

Type

Address or Value

Function call

Function Prototype

x

Structure

12

struct ABC

Value

fun(x)

void fun(struct ABC x);

&x

Single Pointer

8

struct ABC *

Address

fun(&x)

void fun(struct ABC *p);

p

Single Pointer

8

struct ABC *

Address

fun(p)

void fun(struct ABC *p);

&p

Double Pointer

8

struct ABC **

Address

fun(&p)

void fun(struct ABC **q);

*p

Structure

12

struct ABC

Value

fun(*p)

void fun(struct ABC x);

p[0]

Structure

12

struct ABC

Value

fun(p[0])

void fun(struct ABC x);

q

Double Pointer

8

struct ABC **

Address

fun(q)

void fun(struct ABC **q);

&q

Triple Pointer

8

struct ABC ***

Address

fun(&q)

void fun(struct ABC ***r);

*q

Single Pointer

8

struct ABC *

Address

fun(*q)

void fun(struct ABC *p);

q[0]

Single Pointer

8

struct ABC *

Address

fun(q[0])

void fun(struct ABC *p);

**q

Structure

12

struct ABC

Value

fun(**q)

void fun(struct ABC x);

*q[0]

Structure

12

struct ABC

Value

fun(*q[0])

void fun(struct ABC x);

q[0][0]

Structure

12

struct ABC

Value

fun(q[0][0])

void fun(struct ABC x);