Equations of Integer Triple pointer
In this section, you are going to learn
What are the different ways of declarations ?
How to dervie equations ?
What are the Properties of Variable ?
What are the Properties of Expression ?
1. Equations of Triple Pointer
In this section, you are going to learn
How to derive pointer equations for Triple pointer ?
How to apply these equations to understand C statements ?
You can derive equations looking at C declarations !
There are many methods in C, using which a Triple pointer can be declared. See below
1#include <stdio.h> 2 3int main(void) 4{ 5 int x = 10, *p = &x, **q = &p, ***r = &q; 6 7 *p = 20; 8 9 **q = 200; 10 11 ***r = 2000; 12 13 printf("x = %d, *p = %d, **q = %d ***r = %d\n", x, *p, **q, ***r); 14 15 return 0; 16}
- In this example,
xis an integer
pis an single integer pointer
qis a double integer pointer
ris a triple integer pointer
x,p,q,rare declared in one Single Line
x,p,q,rare assigned in one Single Line
xis assigned with value 10
pis assigned with address ofx
qis assigned with address ofp
ris assigned with address ofq
1#include <stdio.h> 2 3int main(void) 4{ 5 int x = 10; 6 7 int *p = &x; 8 9 int **q = &p; 10 11 int ***r = &q; 12 13 *p = 20; 14 15 **q = 200; 16 17 ***r = 2000; 18 19 printf("x = %d, *p = %d, **q = %d ***r = %d\n", x, *p, **q, ***r); 20 21 return 0; 22}
- In this example,
xis an integer
pis a single integer pointer
qis a double integer pointer
ris a triple integer pointer
xis declared in a separate line
pis declared in a separate line
qis declared in a separate line
ris declared in a separate line
xis assigned in the same line of declaration
pis assigned in the same line of declaration
qis assigned in the same line of declaration
ris assigned in the same line of declaration
xis assigned with value 10
pis assigned with address ofx
qis assigned with address ofp
ris assigned with address ofq
1#include <stdio.h> 2 3int main(void) 4{ 5 int x; 6 7 int *p; 8 9 int **q; 10 11 int ***r; 12 13 x = 10; 14 15 p = &x; 16 17 q = &p; 18 19 *p = 20; 20 21 **q = 200; 22 23 ***r = 2000; 24 25 printf("x = %d, *p = %d, **q = %d, ***r = %d\n", x, *p, **q, ***r); 26 27 return 0; 28}
- In this example,
xis an integer
pis a single integer pointer
qis a double integer pointer
ris a triple integer pointer
xis declared in a separate line
pis declared in a separate line
qis declared in a separate line
ris declared in a separate line
xis assigned and is not part of declaration
pis assigned and is not part of declaration
qis assigned and is not part of declaration
ris assigned and is not part of declaration
xis assigned with value 10
pis assigned with address ofx
qis assigned with address ofp
ris assigned with address ofq
Decl #
Declaration
Description
Decl 1
int x = 10, *p = &x, **q = &p, ***r = &q;
Integer x, Single Pointer p, Double Pointer q, Triple Pointer r are declared and assigned in same line
Decl 2
int x = 10;
int *p = &x;
int **q = &p;
int ***r = &q;
Integer x, Single Pointer p, Double Pointer q, Triple Pointer r are declared and assigned in separate lines
Decl 3
int x;
int *p;
int **q;
int ***r;
x = 10;
p = &x;
q = &p;
r = &q;
Integer x, Single Pointer p, Double Pointer q, Triple Pointer r are declared in one line and assigned in another line
Whenever we see any of the above methods of declarations, we need to rewrite them such that, declarations and assignments are not in same line. Similar to Declaration 3
Equation 1 : Obtained from
Step 2p = &x;
Equation 2 : Move
&to the left of First Equation. It turns in to**p = x;
Equation 3 : * and [0] can be used interchangeably. Hence
*pandp[0]are one and the same !p[0] = x;
Equation 4 : From Equation 2, Equation 3, we can derive that
x,*p,p[0]all are same !*p = p[0] = x;
Equation 5 : Obtained from
Step 2q = &p;
Equation 6 : Move & to the left of First Equation. It turns in to *
*q = p;
Equation 7 : * and [0] can be used interchangeably. Hence *q and q[0] are one and the same !
q[0] = p;
Equation 8 : From Equation 6, Equation 7, we can derive that
p,*q,q[0]all are same !*q = q[0] = p;
Equation 9 : From Equation 1, we know
p = &x. Hence Replacepwith&xin Equation 8*q = q[0] = &x;
Equation 10 : Move & to the left of Equation 9. It turns in to *
**q = *q[0] = x;
Equation 11 : * and [0] can be used interchangeably
q[0][0] = x;
Equation 12 : Obtained from
Step 2r = &q;
Equation 13 : Move & to the left of First Equation. It turns in to *
*r = q;
Equation 14 : * and [0] can be used interchangeably. Hence *r and r[0] are one and the same !
r[0] = q;
Equation 15 : From Equation 13, Equation 14, we can derive that
q,*r,r[0]all are same !*r = r[0] = q;
Equation 16 : From Equation 5, we know
q = &p. Hence Replaceqwith&pin Equation 15*r = r[0] = &p;
Equation 17 : Move & to the left of Equation 16. It turns in to *
**r = *r[0] = p;
Equation 18 : * and [0] can be used interchangeably
r[0][0] = p;
Equation 19 : Comparing Equation 17, 18 we can conclude
**r,*r[0],r[0][0]andpall are same !**r = *r[0] = r[0][0] = p;
Equation 20 : From Equation 1,
p = &x. Hence replacepwith&xin Equation 19**r = *r[0] = r[0][0] = &x;
Equation 21 : Move & to the left of Equation 16. It turns in to *
***r = **r[0] = *r[0][0] = x;
Equation 22 : * and [0] can be used interchangeably
***r = **r[0] = r[0][0][0] = x;
Equation #
Equation
Description
Equation 1
p = &x
Base condition
Equation 2
*p = x
From Equation 1, Move & from RHS to LHS to get * on LHS
Equation 3
p[0] = x
* and [0] can be used interchangeably. Hence *p and p[0] are synonyms
Equation 4
*p = p[0] = x
From Equation 2, 3 we can conclude *p, p[0], x are synonyms
Equation #
Equation
Description
Equation 5
q = &p
Base condition
Equation 6
*q = p
From Equation 5, Move & from RHS to LHS to get * on LHS
Equation 7
q[0] = p
* and [0] can be used interchangeably. Hence *q and q[0] are synonyms
Equation 8
*q = q[0] = p
From Equation 6, Equation 7, we can derive that p, *q, q[0] all are same !
Equation 9
*q = q[0] = &x
From Equation 1, we know p = &x. Hence Replace p with &x in Equation 8
Equation 10
**q = *q[0] = x
From Equation 9, Move & from RHS to LHS to get * on LHS
Equation 11
q[0][0] = x
* and [0] can be used interchangeably
Equation #
Equation
Description
Equation 12
r = &q
Base condition
Equation 13
*r = q
From Equation 12, Move & from RHS to LHS to get * on LHS
Equation 14
r[0] = q
* and [0] can be used interchangeably. Hence *r and r[0] are synonyms
Equation 15
*r = r[0] = q
From Equation 13, Equation 14, we can derive that q, *r, r[0] all are same !
Equation 16
*r = r[0] = &p
From Equation 5, we know q = &p. Hence Replace q with &p in Equation 15
Equation 17
**r = *r[0] = p
Move & to the left of Equation 16. It turns in to *
Equation 18
q[0][0] = p
* and [0] can be used interchangeably
Equation 19
**r = *r[0] = r[0][0] = p;
Comparing Equation 17, 18 we can conclude **r, *r[0], r[0][0] and p all are same !
Equation 20
**r = *r[0] = r[0][0] = &x;
From Equation 1, p = &x. Hence replace p with &x in Equation 19
Equation 21
***r = **r[0] = *r[0][0] = x;
Move & to the left of Equation 16. It turns in to *
Equation 22
***r = **r[0] = r[0][0][0] = x;
* and [0] can be used interchangeably
*p = 100; printf("x = %d, *p = %d\n", x, *p);
- Output :
x= 100,*p= 100p[0] = 100; printf("x = %d, p[0] = %d\n", x, p[0]);
- Output :
x= 100,p[0]= 100x = 100; printf("*p = %d, p[0] = %d\n", *p, p[0]);
- Output :
*p= 100,p[0]= 100**q = 100; printf("x = %d, **q = %d\n", x, **q);
- Output :
x= 100,**q= 100*q[0] = 100; printf("x = %d, *q[0] = %d\n", x, *q[0]);
- Output :
x= 100,*q[0]= 100q[0][0] = 100; printf("x = %d, q[0][0] = %d\n", x, q[0][0]);
- Output :
x= 100,q[0][0]= 100int x, y, *p, **q; x = 100; p = &x; q = &p; printf("*p = %d, p[0] = %d, **q = %d\n", *p, p[0], **q); y = 200; // *q, p are synonyms. // Means *q = &y also means p = &y *q = &y; printf("*p = %d, p[0] = %d, **q = %d\n", *p, p[0], **q);
- Output :
*p= 100,p[0]= 100,**q= 100
*p= 200,``p[0]`` = 200,**q= 200int x, y, *p, **q; x = 100; p = &x; q = &p; printf("*p = %d, p[0] = %d, **q = %d\n", *p, p[0], **q); y = 200; // q[0], p are synonyms. // Means q[0] = &y also means p = &y q = &y; printf("*p = %d, p[0] = %d, **q = %d\n", *p, p[0], **q);
- Output :
*p= 100,p[0]= 100,**q= 100
*p= 200,``p[0]`` = 200,**q= 200***r = 100; printf("x = %d, ***r = %d\n", x, ***r);
- Output :
x= 100,***r= 100**r[0] = 100; printf("x = %d, **r[0] = %d\n", x, **r[0]);
- Output :
x= 100,**r[0]= 100r[0][0][0] = 100; printf("x = %d, r[0][0][0] = %d\n", x, r[0][0][0]);
- Output :
x= 100,r[0][0][0]= 100int x, y, *p, **q, ***r; x = 100; p = &x; q = &p; r = &q; printf("*p = %d, p[0] = %d, **q = %d, ***r = %d\n", *p, p[0], **q, ***r); y = 200; **r = &y; //Step 1 : Apply Equation 19 : **r = &y also means p = &y //Step 2 : Now all equations having p like Equation 6, 7, 8 are affected because *q = p // Now, *q = &y, q[0] = &y since p, *q, q[0] all are same // Now, **q = y, *q[0] = y, q[0][0] = y // Now, **q = 200, *q[0] = 200, q[0][0] = 200 //Step 3 : ***r, *r[0], r[0][0][0] = y also means *p = y printf("*p = %d, p[0] = %d, **q = %d, ***r = %d\n", *p, p[0], **q, ***r);
- Output :
*p= 100,p[0]= 100,**q= 100,***r= 100
*p= 200,p[0]= 200,**q= 200,***r= 200int x, y, *p, **q, ***r; x = 100; p = &x; q = &p; r = &q; printf("*p = %d, p[0] = %d, **q = %d, ***r = %d\n", *p, p[0], **q, ***r); y = 200; *r[0] = &y; //Step 1 : Apply Equation 19 : *r[0] = &y also means p = &y //Step 2 : Now all equations having p like Equation 6, 7, 8 are affected because *q = p // Now, *q = &y, q[0] = &y since p, *q, q[0] all are same // Now, **q = y, *q[0] = y, q[0][0] = y // Now, **q = 200, *q[0] = 200, q[0][0] = 200 //Step 3 : ***r, *r[0], r[0][0][0] = y also means *p = y printf("*p = %d, p[0] = %d, **q = %d, ***r = %d\n", *p, p[0], **q, ***r);
- Output :
*p= 100,p[0]= 100,**q= 100,***r= 100
*p= 200,p[0]= 200,**q= 200,***r= 200int x, y, *p, **q, ***r; x = 100; p = &x; q = &p; r = &q; printf("*p = %d, p[0] = %d, **q = %d, ***r = %d\n", *p, p[0], **q, ***r); y = 200; r[0][0] = &y; //Step 1 : Apply Equation 19 : r[0][0] = &y also means p = &y //Step 2 : Now all equations having p like Equation 6, 7, 8 are affected because *q = p // Now, *q = &y, q[0] = &y since p, *q, q[0] all are same // Now, **q = y, *q[0] = y, q[0][0] = y // Now, **q = 200, *q[0] = 200, q[0][0] = 200 //Step 3 : ***r, *r[0], r[0][0][0] = y also means *p = y printf("*p = %d, p[0] = %d, **q = %d, ***r = %d\n", *p, p[0], **q, ***r);
- Output :
*p= 100,p[0]= 100,**q= 100,***r= 100
*p= 200,p[0]= 200,**q= 200,***r= 200int x, *p, **q, ***r; int m, *p1; x = 100; p = &x; q = &p; r = &q; printf("*p = %d, p[0] = %d, **q = %d, ***r = %d\n", *p, p[0], **q, ***r); m = 200; p1 = &m; *r = &p1; //Step 1 : Apply Equation 15 : *r = &p1 also means q = &p1 //Step 2 : **r = p1 and *q = p1 //Step 3 : **r = &m and *q = &m //Step 4 : ***r = m and **q = m //Step 5 : ***r = 200 and **q = 200 //Note p is no changed so far. Hence *p, p[0] is still 100 printf("*p = %d, p[0] = %d, **q = %d, ***r = %d\n", *p, p[0], **q, ***r);
- Output :
*p= 100,p[0]= 100,**q= 100,***r= 100
*p= 100,p[0]= 100,**q= 200,***r= 2001#include <stdio.h> 2 3int main(void) 4{ 5 int x; 6 7 int *p; 8 9 int **q; 10 11 int ***r; 12 13 x = 10; 14 15 p = &x; 16 17 q = &p; 18 19 r = &q; 20 21 printf("x = %d, *p = %d, p[0] = %d, **q = %d, ***r = %d\n", x, *p, p[0], **q, ***r); 22 23 x = 20; 24 25 printf("x = %d, *p = %d, p[0] = %d, **q = %d, ***r = %d\n", x, *p, p[0], **q, ***r); 26 27 *p = 30; 28 29 printf("x = %d, *p = %d, p[0] = %d, **q = %d, ***r = %d\n", x, *p, p[0], **q, ***r); 30 31 p[0] = 40; 32 33 printf("x = %d, *p = %d, p[0] = %d, **q = %d, ***r = %d\n", x, *p, p[0], **q, ***r); 34 35 **q = 50; 36 37 printf("x = %d, *p = %d, p[0] = %d, **q = %d, ***r = %d\n", x, *p, p[0], **q, ***r); 38 39 ***r = 60; 40 41 printf("x = %d, *p = %d, p[0] = %d, **q = %d, ***r = %d\n", x, *p, p[0], **q, ***r); 42 43 return 0; 44}
- Output :
x= 10,*p= 10,p[0]= 10**q = 10,***r = 10
x= 20,*p= 20,p[0]= 20**q = 20,***r = 20
x= 30,*p= 30,p[0]= 30**q = 30,***r = 30
x= 40,*p= 40,p[0]= 40**q = 40,***r = 40
x= 50,*p= 50,p[0]= 50**q = 50,***r = 50
x= 50,*p= 50,p[0]= 50**q = 50,***r = 60
2. Properties of a variable
In this section, you are going to learn
Properties of a variable
Type of a variable ?
Size of a variable ?
Scope, Lifetime and Memory of a variable ?
1int x; 2 3int *p; 4 5int **q; 6 7int ***r; 8 9p = &x; 10 11q = &p; 12 13r = &q;
In above code snippet, there are four variables
x,p,q,r
Variable
Type
Description
type_of(x)
int
See Line 1
type_of(p)
int *
See Line 3
type_of(q)
int **
See Line 5
type_of(r)
int ***
See Line 7
Adress of variable must be stored in next level pointer type always
1int x; 2 3int *p; 4 5int **q; 6 7int ***r; 8 9p = &x; 10 11q = &p; 12 13r = &q; 14 15*p = 10;
In above code snippet, there are four variables
x,p,q,r
Variable
Type
Description
type_of(&x)
int *
type_of(x)isintHence,
type_of(&x)isint *type_of(&p)
int **
type_of(p)isint *Hence,
type_of(&p)isint **type_of(&q)
int ***
type_of(q)isint **Hence,
type_of(&q)isint ***type_of(&r)
int ****
type_of(r)isint ***Hence,
type_of(&r)isint ****
Sizeof(type)
Size
sizeof(char)
1 Bytes
sizeof(int)
4 Bytes
sizeof(float)
4 Bytes
sizeof(double)
8 Bytes
sizeof(pointer types)is always 8 Bytes, where pointer is single, double, triple etc.,:
Sizeof(type *)
Size
sizeof(char *)
8 Bytes
sizeof(int *)
8 Bytes
sizeof(float *)
8 Bytes
sizeof(double *)
8 Bytes
sizeof(struct xyz *)
8 Bytes
sizeof(union xyz *)
8 Bytes
Sizeof(type **)
Size
sizeof(char **)
8 Bytes
sizeof(int **)
8 Bytes
sizeof(float **)
8 Bytes
sizeof(double **)
8 Bytes
sizeof(struct xyz **)
8 Bytes
sizeof(union xyz **)
8 Bytes
etc.,
Sizeof(type ***)
Size
sizeof(char ***)
8 Bytes
sizeof(int ***)
8 Bytes
sizeof(float ***)
8 Bytes
sizeof(double ***)
8 Bytes
sizeof(struct xyz ***)
8 Bytes
sizeof(union xyz ***)
8 Bytes
etc.,
sizeof(&variable)is always 8 Bytes, wheretype_of(variable)can be anything
Sizeof(&variable)
Size
Declaration
sizeof(&x)
8 Bytes
char x;sizeof(&x)
8 Bytes
int x;sizeof(&x)
8 Bytes
float x;sizeof(&x)
8 Bytes
double x;sizeof(&x)
8 Bytes
struct xyz x;sizeof(&x)
8 Bytes
union xyz x;
Sizeof(&variable)
Size
Declaration
sizeof(&x)
8 Bytes
char *x;sizeof(&x)
8 Bytes
int *x;sizeof(&x)
8 Bytes
float *x;sizeof(&x)
8 Bytes
double *x;sizeof(&x)
8 Bytes
struct xyz *x;sizeof(&x)
8 Bytes
union xyz *x;
Sizeof(&variable)
Size
Declaration
sizeof(&x)
8 Bytes
char **x;sizeof(&x)
8 Bytes
int **x;sizeof(&x)
8 Bytes
float **x;sizeof(&x)
8 Bytes
double **x;sizeof(&x)
8 Bytes
struct xyz **x;sizeof(&x)
8 Bytes
union xyz **x;
Sizeof(&variable)
Size
Declaration
sizeof(&x)
8 Bytes
char ***x;sizeof(&x)
8 Bytes
int ***x;sizeof(&x)
8 Bytes
float ***x;sizeof(&x)
8 Bytes
double ***x;sizeof(&x)
8 Bytes
struct xyz ***x;sizeof(&x)
8 Bytes
union xyz ***x;
sizeof(variable)equalssizeof(typeof(variable))1int x; 2 3int *p; 4 5int **q; 6 7int ***r; 8 9p = &x; 10 11q = &p; 12 13*p = 10;
In above code snippet, there are four variables
x,p,q,r
Sizeof(Variable)
Size
Description
sizeof(x)
4 Bytes
- How ?
Step 1 :
sizeof(x)equalssizeof(typeof(x))Step 2 :
type_of(x)isintStep 3 :
sizeof(int)is4 BytesHence,
sizeof(x)is4 Bytessizeof(p)
8 Bytes
- How ?
Step 1 :
sizeof(p)equalssizeof(typeof(p))Step 2 :
type_of(p)isint *Step 3 :
sizeof(int *)is8 BytesHence,
sizeof(p)is8 Bytessizeof(q)
8 Bytes
- How ?
Step 1 :
sizeof(q)equalssizeof(typeof(q))Step 2 :
type_of(q)isint **Step 3 :
sizeof(int **)is8 BytesHence,
sizeof(q)is8 Bytessizeof(r)
8 Bytes
- How ?
Step 1 :
sizeof(r)equalssizeof(typeof(r))Step 2 :
type_of(r)isint ***Step 3 :
sizeof(int ***)is8 BytesHence,
sizeof(r)is8 Bytes
Global Scope and Lifetime.
Local Scope and Lifetime
3. Properties of Expressions
In this section, you are going to learn
Properties of Expressions
What is an Expression ?
Table of Expressions
Table of Size (for Expressions)
Table of Type (for Expressions)
Table of Address/Value (for Expression)
Table of Function Prototype (for Expression)
1int x;
2
3int *p;
4
5int **q;
6
7p = &x;
8
9q = &p;
10
11*p = 10;
12
13**q = 100;
Expression
Description
x
xis an integer&x
&xis address of an integer
&xis a single pointerp
pis a pointer to an integer
pis a single pointer&p
&pis address of a pointer
&pis a double pointer*p
*pis an integer, because*p = x. See Equation 2p[0]
p[0]is an integer, becausep[0] = x. See Equation 3q
qis a double pointer and holds the address of a single pointer&q
&qis address of a double pointer
&qis a triple pointer*q
*qholds the address of integer x. See Equation 9
*qis a single pointer.*q = p. See Equation 8q[0]
q[0]holds the address of integer x. See Equation 9
q[0]is a single pointer.*q = p. See Equation 8**q
**qis an integer. See Equation 10*q[0]
*q[0]is an integer. See Equation 10q[0][0]
q[0][0]is an integer. See Equation 11r
ris a triple pointer and holds the address of a double pointer&r
&ris a fourth pointer*r
*ris a double pointer. See Equation 15
*rholds the address of a single pointer. See Equation 16r[0]
*ris a double pointer. See Equation 15
*rholds the address of a single pointer. See Equation 16**r
**ris a single pointer. See Equation 17
**rholds the address of an integer. See Equation 20*r[0]
*r[0]is a single pointer. See Equation 17
*r[0]holds the address of an integer. See Equation 20r[0][0]
r[0][0]is a single pointer. See Equation 19
r[0][0]holds the address of an integer. See Equation 20***r
***ris an integer. See Equation 22**r[0]
**r[0]is an integer. See Equation 22r[0][0][0]
r[0][0][0]is an integer. See Equation 22
Expression
Size
Description
sizeof(x)
4 Bytes
sizeof(&x)
8 Bytes
sizeof(p)
8 Bytes
sizeof(&p)
8 Bytes
sizeof(*p)
4 Bytes
Step 1 :
sizeof(*p)equalssizeof(x)See Equation 2Step 2 :
sizeof(x)equalssizeof(type_of(x))See Property 2.4Step 3 :
sizeof(type_of(x))equalssizeof(int)See Property 1.1Step 4 :
sizeof(int)equals 4 Bytessizeof(p[0])
4 Bytes
Step 1 :
sizeof(p[0])equalssizeof(x)``= xSee Equation 3Step 2 :
sizeof(x)equalssizeof(type_of(x))See Property 2.4Step 3 :
sizeof(type_of(x))equalssizeof(int)See Property 1.1Step 4 :
sizeof(int)equals 4 Bytessizeof(q)
8 Bytes
sizeof(&q)
8 Bytes
sizeof(*q)
8 Bytes
Step 1 :
sizeof(*q)equalssizeof(p). See Equation 8Step 2 :
sizeof(p), equalssizeof(type_of(p))See Property 2.4Step 3 :
sizeof(type_of(p))equalssizeof(int *)See Property 1.1Step 4 :
sizeof(int *)equals 8 Bytessizeof(q[0])
8 Bytes
Step 1 :
sizeof(q[0])equalssizeof(p)See Equation 8Step 2 :
sizeof(p)equalssizeof(type_of(p))See Property 2.4Step 3 :
sizeof(type_of(p))equalssizeof(int *)See Property 1.1Step 4 :
sizeof(int *)equals 8 Bytessizeof(**q)
4 Bytes
Step 1 :
sizeof(**q)equalssizeof(x)See Equation 10Step 2 :
sizeof(x)equalssizeof(type_of(x))See Property 2.4Step 3 :
sizeof(type_of(x))equalssizeof(int)See Property 1.1Step 4 :
sizeof(int)equals 4 Bytessizeof(*q[0])
4 Bytes
Step 1 :
sizeof(*q[0])equalssizeof(x)See Equation 10Step 2 :
sizeof(x)equalssizeof(type_of(x))See Property 2.4Step 3 :
sizeof(type_of(x))equalssizeof(int)See Property 1.1Step 4 :
sizeof(int)equals 4 Bytessizeof(q[0][0])
4 Bytes
Step 1 :
sizeof(q[0][0])equalssizeof(x)See Equation 11Step 2 :
sizeof(x)equalssizeof(type_of(x))See Property 2.4Step 3 :
sizeof(type_of(x))equalssizeof(int)See Property 1.1Step 4 :
sizeof(int)equals 4 Bytessizeof(r)
8 Bytes
sizeof(&r)
8 Bytes
sizeof(*r)
8 Bytes
Step 1 :
sizeof(*r)equalssizeof(q). See Equation 15Step 2 :
sizeof(q)equalssizeof(type_of(q))Step 3 :
sizeof(type_of(q))equalssizeof(int **)Step 4 :
sizeof(int **)equals 8 Bytessizeof(r[0])
8 Bytes
Step 1 :
sizeof(r[0])equalssizeof(q). See Equation 15Step 2 :
sizeof(q)equalssizeof(type_of(q))Step 3 :
sizeof(type_of(q))equalssizeof(int **)Step 4 :
sizeof(int **)equals 8 Bytessizeof(**r)
8 Bytes
Step 1 :
sizeof(**r)equalssizeof(p). See Equation 19Step 2 :
sizeof(p)equalssizeof(type_of(p))See Property 2.4Step 3 :
sizeof(type_of(p))equalssizeof(int *)See Property 1.1Step 4 :
sizeof(int *)equals 8 Bytessizeof(*r[0])
8 Bytes
Step 1 :
sizeof(*r[0])equalssizeof(p). See Equation 19Step 2 :
sizeof(p)equalssizeof(type_of(p))See Property 2.4Step 3 :
sizeof(type_of(p))equalssizeof(int *)See Property 1.1Step 4 :
sizeof(int *)equals 8 Bytessizeof(r[0][0])
8 Bytes
Step 1 :
sizeof(r[0][0])equalssizeof(p). See Equation 19Step 2 :
sizeof(p)equalssizeof(type_of(p))See Property 2.4Step 3 :
sizeof(type_of(p))equalssizeof(int *)See Property 1.1Step 4 :
sizeof(int *)equals 8 Bytessizeof(***r)
4 Bytes
Step 1 :
sizeof(***r)equalssizeof(x). See Equation 22Step 2 :
sizeof(x)equalssizeof(type_of(x))See Property 2.4Step 3 :
sizeof(type_of(x))equalssizeof(int)See Property 1.1Step 4 :
sizeof(int)equals 4 Bytes. See Equation 22sizeof(**r[0])
4 Bytes
Step 1 :
sizeof(**r[0])equalssizeof(x). See Equation 22Step 2 :
sizeof(x)equalssizeof(type_of(x))See Property 2.4Step 3 :
sizeof(type_of(x))equalssizeof(int)See Property 1.1Step 4 :
sizeof(int)equals 4 Bytes. See Equation 22sizeof(r[0][0][0])
4 Bytes
Step 1 :
sizeof(r[0][0][0])equalssizeof(x). See Equation 22Step 2 :
sizeof(x)equalssizeof(type_of(x))See Property 2.4Step 3 :
sizeof(type_of(x))equalssizeof(int)See Property 1.1Step 4 :
sizeof(int)equals 4 Bytes
Expression
Type
Description
type_of(x)
int
type_of(&x)
int *
type_of(p)
int *
type_of(&p)
int **
type_of(*p)
int
Step 1 :
type_of(*p)equalstype_of(x), because*p = x. See Equation 2Step 2 :
type_of(x)equalsinttype_of(p[0])
int
Step 1 :
type_of(p[0])equalstype_of(x), becausep[0] = x. See Equation 3Step 2 :
type_of(x)equalsinttype_of(q)
int **
type_of(&q)
int ***
type_of(*q)
int *
Step 1 :
type_of(*q)equalstype_of(p). See Equation 8Step 2 :
type_of(p), equalsint *See Property 1.1type_of(q[0])
int *
Step 1 :
type_of(q[0])equalstype_of(p)See Equation 8Step 2 :
type_of(p)equalsint *See Property 1.1type_of(**q)
int
Step 1 :
type_of(**q)equalstype_of(x)See Equation 10Step 2 :
type_of(x)equalsintSee Property 1.1type_of(*q[0])
int
Step 1 :
type_of(*q[0])equalstype_of(x)See Equation 10Step 2 :
type_of(x)equalsintSee Property 1.1type_of(q[0][0])
int
Step 1 :
type_of(q[0][0])equalstype_of(x)See Equation 11Step 2 :
type_of(x)equalsintSee Property 1.1type_of(r)
int ***
type_of(&r)
int ****
type_of(*r)
int **
Step 1 :
type_of(*r)equalstype_of(q). See Equation 15Step 2 :
type_of(q)equalsint **type_of(r[0])
int **
Step 1 :
type_of(r[0])equalstype_of(q). See Equation 15Step 2 :
type_of(q)equalsint **type_of(**r)
int *
Step 1 :
type_of(**r)equalstype_of(p). See Equation 19Step 2 :
type_of(type_of(p))equalsint *See Property 1.1type_of(*r[0])
int *
Step 1 :
type_of(*r[0])equalstype_of(p). See Equation 19Step 2 :
type_of(type_of(p))equalsint *See Property 1.1type_of(r[0][0])
int *
Step 1 :
type_of(r[0][0])equalstype_of(p). See Equation 19Step 2 :
type_of(type_of(p))equalsint *See Property 1.1type_of(***r)
int
Step 1 :
type_of(***r)equalstype_of(x). See Equation 22Step 2 :
type_of(x)equalsintSee Property 2.4type_of(**r[0])
int
step 1 :
type_of(**r[0])equalstype_of(x). see equation 22step 2 :
type_of(x)equalsintsee property 2.4type_of(r[0][0][0])
int
step 1 :
type_of(r[0][0][0])equalstype_of(x). see equation 22step 2 :
type_of(x)equalsintsee property 2.4
Expression
Address/Value
Description
x
Value
Step 1 :
xis an integerStep 2 : Hence
xis a value&x
Address
& operator indicates address
p
Address
Step 1 :
p = &xSee Equation 1Step 2 : & operator indicates address
&p
Address
& operator indicates address
*p
Value
Step 1 :
*pis an integer.*p = xSee Equation 2Step 2 : Hence
*pis a valuep[0]
Value
Step 1 :
p[0]is an integer.p[0] = xSee Equation 3Step 2 : Hence
p[0]is a valueq
Address
Step 1 :
q = &pSee Equation 5Step 2 : & operator indicates address
&q
Address
& operator indicates address
*q
Address
Step 1 :
*q = pSee Equation 6Step 2 :
p = &xStep 3 : & operator indicates address
q[0]
Address
Step 1 :
q[0] = pSee Equation 7Step 2 :
p = &xStep 3 : & operator indicates address
**q
Value
Step 1 :
**q = xSee Equation 10Step 2 :
xis an integerStep 3 :
**qis a Value*q[0]
Value
Step 1 :
*q[0] = xSee Equation 10Step 2 :
xis an integerStep 3 :
*q[0]is a Valueq[0][0]
Value
Step 1 :
q[0][0] = xSee Equation 11Step 2 :
xis an integerStep 3 :
q[0][0]is a Valuer
Address
Step 1 :
r = &qSee Equation 12Step 2 : & operator indicates address
&r
Address
Step 1 : & operator indicates address
*r
Address
Step 1 :
*r = qSee Equation 15Step 2 :
*r = &pSee Equation 16Step 3 : & operator indicates address
r[0]
Address
Step 1 :
*r = qSee Equation 15Step 2 :
*r = &pSee Equation 16Step 3 : & operator indicates address
**r
Address
Step 1 :
**r = pSee Equation 19Step 2 :
**r = &xSee Equation 20Step 3 : & operator indicates address
*r[0]
Address
Step 1 :
*r[0] = pSee Equation 19Step 2 :
*r[0] = &xSee Equation 20Step 3 : & operator indicates address
r[0][0]
Address
Step 1 :
r[0][0] = pSee Equation 19Step 2 :
r[0][0] = &xSee Equation 20Step 3 : & operator indicates address
***r
Value
Step 1 :
***r = xSee Equation 22Step 2 :
xis an integerStep 3 :
r[0][0][0]is a Value**r[0]
Value
Step 1 :
**r[0] = xSee Equation 22Step 2 :
xis an integerStep 3 :
r[0][0][0]is a Valuer[0][0][0]
Value
Step 1 :
r[0][0][0] = xSee Equation 22Step 2 :
xis an integerStep 3 :
r[0][0][0]is a Value
If
fun(v)is function call then,fun(type_of(v))is the prototype
Function call
Function Prototype
Description
fun(x)
void fun(int x);
fun(&x)
void fun(int *p);
fun(p)
void fun(int *p);
fun(&p)
void fun(int **p);
fun(*p)
void fun(int x);
Step 1 :
fun(*p)equalsfun(x)See Equation 2Step 2 :
fun(x)equalsfun(type_of(x))Step 3 :
fun(type_of(x))equalsfun(int)fun(p[0])
void fun(int x);
Step 1 :
fun(p[0])equalsfun(x)See Equation 2Step 2 :
fun(x)equalsfun(type_of(x))Step 3 :
fun(type_of(x))equalsfun(int)fun(q)
void fun(int **q);
fun(&q)
void fun(int ***q);
fun(*q)
void fun(int *q);
Step 1 :
fun(*q)equalsfun(p)Step 2 :
fun(p)equalsfun(type_of(p))Step 3 :
fun(type_of(p))equalsfun(int *)fun(q[0])
void fun(int *q);
Step 1 :
fun(q[0])equalsfun(p)Step 2 :
fun(p)equalsfun(type_of(p))Step 3 :
fun(type_of(p))equalsfun(int *)fun(**q)
void fun(int x);
Step 1 :
fun(**q)equalsfun(x)See Equation 10Step 2 :
fun(x)equalsfun(type_of(x))Step 3 :
fun(type_of(x))equalsfun(int)fun(*q[0])
void fun(int x);
Step 1 :
fun(*q[0])equalsfun(x)See Equation 10Step 2 :
fun(x)equalsfun(type_of(x))Step 3 :
fun(type_of(x))equalsfun(int)fun(q[0][0])
void fun(int x);
Step 1 :
fun(q[0][0])equalsfun(x)See Equation 11Step 2 :
fun(x)equalsfun(type_of(x))Step 3 :
fun(type_of(x))equalsfun(int)fun(r)
void fun(int ***r);
Step 1 :
fun(r)equalsfun(type_of(r))Step 2 :
fun(type_of(r))equalsfun(int ***)fun(&r)
void fun(int ****s);
Step 1 :
fun(&r)equalsfun(type_of(&r))Step 2 :
fun(type_of(&r))equalsfun(int ****)fun(*r)
void fun(int **q);
Step 1 :
fun(*r)equalsfun(q)See Equation 15Step 2 :
fun(q)equalsfun(type_of(q))Step 3 :
fun(type_of(q))equalsfun(int **)fun(r[0])
void fun(int **q);
Step 1 :
fun(r[0])equalsfun(q)See Equation 15Step 2 :
fun(q)equalsfun(type_of(q))Step 3 :
fun(type_of(q))equalsfun(int **)fun(**r)
void fun(int *p);
Step 1 :
fun(**r)equalsfun(p)See Equation 19Step 2 :
fun(p)equalsfun(type_of(p))Step 3 :
fun(type_of(p))equalsfun(int *)fun(*r[0])
void fun(int *p);
Step 1 :
fun(*r[0])equalsfun(p)See Equation 19Step 2 :
fun(p)equalsfun(type_of(p))Step 3 :
fun(type_of(p))equalsfun(int *)fun(r[0][0])
void fun(int *p);
Step 1 :
fun(**r)equalsfun(p)See Equation 19Step 2 :
fun(p)equalsfun(type_of(p))Step 3 :
fun(type_of(p))equalsfun(int *)fun(***r)
void fun(int x);
Step 1 :
fun(***r)equalsfun(x)See Equation 22Step 2 :
fun(x)equalsfun(type_of(x))Step 3 :
fun(type_of(x))equalsfun(int)fun(**r[0])
void fun(int x);
Step 1 :
fun(**r[0])equalsfun(x)See Equation 22Step 2 :
fun(x)equalsfun(type_of(x))Step 3 :
fun(type_of(x))equalsfun(int)fun(r[0][0][0])
void fun(int x);
Step 1 :
fun(r[0][0][0])equalsfun(x)See Equation 22Step 2 :
fun(x)equalsfun(type_of(x))Step 3 :
fun(type_of(x))equalsfun(int)
4. Summary
# |
? |
Size in Bytes |
Type |
Address or Value |
Function call |
Function Prototype |
|---|---|---|---|---|---|---|
x |
Integer |
4 |
int |
Value |
fun(x) |
void fun(int x); |
&x |
Single Pointer |
8 |
int * |
Address |
fun(&x) |
void fun(int *p); |
p |
Single Pointer |
8 |
int * |
Address |
fun(p) |
void fun(int *p); |
&p |
Double Pointer |
8 |
int ** |
Address |
fun(&p) |
void fun(int **q); |
*p |
Integer |
4 |
int |
Value |
fun(*p) |
void fun(int x); |
p[0] |
Integer |
4 |
int |
Value |
fun(p[0]) |
void fun(int x); |
q |
Double Pointer |
8 |
int ** |
Address |
fun(q) |
void fun(int **q); |
&q |
Triple Pointer |
8 |
int *** |
Address |
fun(&q) |
void fun(int ***r); |
*q |
Single Pointer |
8 |
int * |
Address |
fun(*q) |
void fun(int *p); |
q[0] |
Single Pointer |
8 |
int * |
Address |
fun(q[0]) |
void fun(int *p); |
**q |
Integer |
4 |
int |
Value |
fun(**q) |
void fun(int x); |
*q[0] |
Integer |
4 |
int |
Value |
fun(*q[0]) |
void fun(int x); |
q[0][0] |
Integer |
4 |
int |
Value |
fun(q[0][0]) |
void fun(int x); |
r |
Triple Pointer |
8 |
int *** |
Address |
fun(r) |
void fun(int ***r); |
&r |
Fourth Pointer |
8 |
int **** |
Address |
fun(&r) |
void fun(int ****s); |
*r |
Double Pointer |
8 |
int ** |
Address |
fun(*r) |
void fun(int **q); |
r[0] |
Double Pointer |
8 |
int ** |
Address |
fun(r[0]) |
void fun(int **q); |
**r |
Single Pointer |
8 |
int * |
Address |
fun(**r) |
void fun(int *p); |
*r[0] |
Single Pointer |
8 |
int * |
Address |
fun(*r[0]) |
void fun(int *p); |
r[0][0] |
Single Pointer |
8 |
int * |
Address |
fun(r[0][0]) |
void fun(int *p); |
***r |
Integer |
4 |
int |
Value |
fun(***r) |
void fun(int x); |
**r[0] |
Integer |
4 |
int |
Value |
fun(**r[0]) |
void fun(int x); |
r[0][0][0] |
Integer |
4 |
int |
Value |
fun(r[0][0][0]) |
void fun(int x); |
Current Module
Next Module
Other Modules