IPV4 RAW AF INET TCP server client program with Epoll system call
In this program, you are going to learn
How to create a Socket ?
How to write a data ?
How to read a data ?
How to use socket APIs ?
Let us answer few basic questions in this socket
What does socket(AF_INET, SOCK_RAW, IPPROTO_TCP)
do?
See Answer
This call creates a raw socket in the AF_INET
address family for direct access to TCP packets.
When is it appropriate to use SOCK_RAW
sockets with TCP?
See Answer
It’s suitable for tasks like packet capturing, network monitoring, or implementing custom protocols where direct access to TCP packets is needed.
Can this socket be used for regular TCP communication?
See Answer
While technically possible, it’s not recommended for regular communication due to increased complexity and potential security risks.
How does a raw TCP socket differ from a regular TCP socket?
See Answer
A raw TCP socket provides direct access to the TCP layer, allowing for manual packet manipulation, whereas regular TCP sockets handle packet details internally.
What are some use cases for raw TCP sockets?
See Answer
Use cases include network sniffing, packet analysis, security auditing, and developing custom network protocols.
How can I capture and analyze TCP packets using raw sockets?
See Answer
You can use the raw socket to capture TCP packets and analyze them using packet analysis tools like Wireshark.
Is error checking needed after creating the socket?
See Answer
Yes, checking for errors ensures that the socket is created successfully before proceeding with further operations.
Why is it important to check the return value of read() and write() in socket programming?
See Answer
It detects issues such as network errors or closed connections.
What is the primary purpose of the epoll system call?
See Answer
To efficiently monitor multiple file descriptors for I/O events
What types of file descriptors can be monitored using epoll?
See Answer
sockets, files, timerfd, socketpair, message_queue, Namedpipes and shared_memory.
What data structure is used by epoll to store events?
See Answer
Hash table
How do you handle errors when using the epoll system call?
See Answer
Check the return value for -1 to detect errors, Use perror to print error messages.
How does epoll handle a set of file descriptors with different states (e.g., reading, writing, exception)?
See Answer
- Create the epoll Instance:
Before monitoring file descriptors, the application creates an epoll instance using the epoll_create system call.
int epoll_fd = epoll_create1(0);
- Register File Discriptors:
The application registers file descriptors with the epoll instance using the epoll_ctl system call. It specifies the file descriptor, the events it is interested in (EPOLLIN for readability, EPOLLOUT for writability, etc.), and a user-defined data associated with the file descriptor.
struct epoll_event event;
event.events = EPOLLIN | EPOLLOUT; // Interested in readability and writability
event.data.fd = my_file_descriptor; // File descriptor to monitor
epoll_ctl(epoll_fd, EPOLL_CTL_ADD, my_file_descriptor, &event);
- Wait for Events:
The application enters a loop where it calls epoll_wait to wait for events. This call blocks until one or more registered file descriptors become ready or until a timeout occurs.
#define MAX_EVENTS 10
struct epoll_event events[MAX_EVENTS];
int num_events = epoll_wait(epoll_fd, events, MAX_EVENTS, timeout_ms);
- Modify or Remove File Descriptors:
The application can dynamically modify or remove file descriptors from the epoll set using the epoll_ctl system call. For example, to modify events for an existing file descriptor:
struct epoll_event new_event;
new_event.events = EPOLLOUT; // Modify to be interested in writability
epoll_ctl(epoll_fd, EPOLL_CTL_MOD, my_file_descriptor, &new_event);
To remove a file descriptor from the epoll set:
epoll_ctl(epoll_fd, EPOLL_CTL_DEL, my_file_descriptor, NULL);
How does epoll Checking Ready File Descriptors?
See Answer
After epoll_wait returns, the application iterates through the returned events to identify which file descriptors are ready and for what types of events.
for (int i = 0; i < num_events; ++i) {
if (events[i].events & EPOLLIN) {
// File descriptor i is ready for reading
}
if (events[i].events & EPOLLOUT) {
// File descriptor i is ready for writing
}
// Check other events if needed (e.g., EPOLLERR, EPOLLHUP)
}
What does it mean if epoll returns 0?
See Answer
No file descriptors are ready within the specified timeout.
There are many functions used in socket. We can classify those functions based on functionalities.
Create Socket
Bind Socket
Connect Socket
Epoll create1
Epoll_ctl
Epoll_wait
Write data_packet
Read data_packet
Close socket
socket()
is used to create a new socket. For example,
sock_fd = socket(AF_INET, SOCK_RAW, IPPROTO_TCP);
bind()
is used to associate the socket with a specific address and port. For example,
ret = bind(sock_fd, (struct sockaddr*)servaddr, sizeof(struct sockaddr_in));
connect()
is used in network programming to establish a connection from a client to a server. For example,
ret = connect(sock_fd, (struct sockaddr*)client_addr, sizeof(struct sockaddr_in));
epoll_create1()
creating an epoll instance using epoll_create1, The size parameter is an advisory hint for the kernel regarding the number of file descriptors expected to be monitored, For example,
epoll_fd = epoll_create1(0);
epoll_ctl()
After creating an epoll instance, file descriptors are added to it using epoll_ctl, For example,
ret = epoll_ctl(epoll_fd, EPOLL_CTL_ADD, sock_fd, &event);
epoll_wait()
The application then enters a loop where it waits for events using epoll_wait, For example,
ready_fds = epoll_wait(epoll_fd, events, MAX_EVENTS, -1);
read
system call in C is commonly used to read data from a file descriptor, such as a socket.
ret = read(sock_fd, recvbuffer, sizeof(recvbuffer));
write
system call in C is used to write data to a file descriptor, such as a socket.
ret = write(sock_fd, buffer, sizeof(buffer));
close
is used to close the socket To free up system resources associated with the socket. For example,
(void)close(sock_fd);
See the full program below,
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <signal.h>
#include <errno.h>
#include <linux/ip.h>
#include <netinet/tcp.h>
#include <sys/epoll.h>
#define PORT 50000
#define PORT_CLIENT 50001
#define MAX_EVENTS 5
struct sockaddr_in
*servaddr = NULL,
*client_addr = NULL;
int sock_fd;
int epoll_fd;
struct pseudo_iphdr {
unsigned int source_ip_addr;
unsigned int dest_ip_addr;
unsigned char fixed;
unsigned char protocol;
unsigned short tcp_len;
};
unsigned short in_cksum (
uint16_t * addr, int len)
{
int nleft = len;
unsigned int sum = 0;
unsigned short *w = addr;
unsigned short answer = 0;
while (nleft > 1) {
sum += *w++;
nleft -= 2;
}
if (nleft == 1) {
*(unsigned char *)
(&answer) =
* (unsigned char *) w;
sum += answer;
}
sum = (sum >> 16) +
(sum & 0xffff);
sum += (sum >> 16);
answer = (unsigned short) ~sum;
return (answer);
}
void interrupt_handler (
int signum) {
(void)close(sock_fd);
free(client_addr);
exit(0);
}
void validate_convert_addr(
char *ip_str,
struct sockaddr_in *sock_addr)
{
if (ip_str == NULL) {
perror("Invalid ip_str\n");
exit(EXIT_FAILURE);
}
if (sock_addr == NULL) {
perror("Invalid sock_addr\n");
exit(EXIT_FAILURE);
}
printf("IP Address: %s\n", ip_str);
if (inet_pton(AF_INET, ip_str,
&(sock_addr->sin_addr)) <= 0) {
perror("Invalid address\n");
exit(EXIT_FAILURE);
}
}
int main (int argc, char *argv[])
{
char buffer[1024] =
{0};
unsigned char recvbuffer[1024] =
{0};
int length, ret;
char *string =
"Hello client";
struct tcphdr *tcp_hdr = NULL;
char *string_data = NULL;
char *recv_string_data = NULL;
char *csum_buffer = NULL;
struct pseudo_iphdr
csum_hdr;
int ready_fds;
struct epoll_event events[MAX_EVENTS];
struct epoll_event event;
if (argc != 2) {
printf("%s<ip-addr>\n",
argv[0]);
exit(EXIT_FAILURE);
}
signal (SIGINT,
interrupt_handler);
signal (SIGTERM,
interrupt_handler);
sock_fd = socket(AF_INET,
SOCK_RAW,
IPPROTO_TCP);
if(0 > sock_fd) {
printf("unable to create\n");
exit(0);
}
servaddr = (struct sockaddr_in *)malloc(
sizeof(struct sockaddr_in));
if (servaddr == NULL) {
printf("could not allocate memory\n");
goto end;
}
servaddr->sin_family = AF_INET;
servaddr->sin_port = PORT;
validate_convert_addr(argv[1],
servaddr);
ret = bind(sock_fd,
(struct sockaddr *)servaddr,
sizeof(struct sockaddr_in));
if (ret < 0) {
printf("bind\n");
goto end1;
}
client_addr = (struct sockaddr_in *)malloc(
sizeof(struct sockaddr_in));
if (client_addr == NULL) {
printf("allocation memory\n");
goto end2;
}
client_addr->sin_family = AF_INET;
client_addr->sin_port =
PORT_CLIENT;
validate_convert_addr(argv[1],
client_addr);
ret = connect(sock_fd,
(struct sockaddr *)client_addr,
sizeof(struct sockaddr_in));
if (ret != 0) {
printf("error %d", errno);
printf("connect returned error\n");
goto end2;
}
string_data = (char *)
(buffer + sizeof(struct tcphdr));
strncpy(string_data, string,
strlen(string));
tcp_hdr = (struct tcphdr *)buffer;
tcp_hdr->source = htons(PORT);
tcp_hdr->dest =
htons(PORT_CLIENT);
tcp_hdr->ack_seq = 0x0;
tcp_hdr->doff = 5;
tcp_hdr->syn = 1;
tcp_hdr->window = htons(200);
csum_buffer = (char *)calloc((
sizeof(struct pseudo_iphdr) +
sizeof(struct tcphdr) +
strlen(string_data)),
sizeof(char));
if (csum_buffer == NULL) {
printf("allocate csum buffer\n");
goto end1;
}
csum_hdr.source_ip_addr =
inet_addr("192.168.1.11");
csum_hdr.dest_ip_addr =
inet_addr("192.168.1.14");
csum_hdr.fixed = 0;
csum_hdr.protocol =
IPPROTO_TCP;
csum_hdr.tcp_len =
htons(sizeof(struct tcphdr) +
strlen(string_data) + 1);
memcpy(csum_buffer, (char *)&csum_hdr,
sizeof(struct pseudo_iphdr));
memcpy(csum_buffer +
sizeof(struct pseudo_iphdr), buffer,
(sizeof(struct tcphdr) +
strlen(string_data) + 1));
tcp_hdr->check = (in_cksum(
(unsigned short *) csum_buffer,
(sizeof(struct pseudo_iphdr)+
sizeof(struct tcphdr) + strlen(string_data) + 1)));
printf("checksum is %x", tcp_hdr->check);
free (csum_buffer);
epoll_fd = epoll_create1(0);
if (epoll_fd == -1) {
perror("Epoll creation failed");
exit(EXIT_FAILURE);
}
event.events = EPOLLIN;
event.data.fd = sock_fd;
ret = epoll_ctl(epoll_fd,
EPOLL_CTL_ADD, sock_fd, &event);
if (ret < 0) {
perror("Epoll_ctl failed");
exit(EXIT_FAILURE);
}
while (1) {
ready_fds = epoll_wait(epoll_fd, events, MAX_EVENTS, -1);
if (ready_fds == -1) {
perror("Epoll wait failed");
exit(EXIT_FAILURE);
}
if (events[0].data.fd == sock_fd) {
memset(recvbuffer, 0,
sizeof(recvbuffer));
ret = read(sock_fd, recvbuffer,
sizeof(recvbuffer));
if (ret == -1) {
perror("read error");
break;
}
tcp_hdr = (struct tcphdr *)
(recvbuffer + sizeof (struct iphdr));
recv_string_data = (char *)
(recvbuffer + sizeof (struct iphdr) +
sizeof (struct tcphdr));
if (PORT == ntohs(tcp_hdr->dest)) {
printf("Received : %s\n", recv_string_data);
}
ret = write(sock_fd, buffer,
sizeof(buffer));
if (ret == -1) {
perror("write error");
break;
}
}
}
end2:
free(client_addr);
end1:
free(servaddr);
end:
(void)close(sock_fd);
return 0;
}
$ gcc -o server server.c
$ sudo ./server 127.0.0.1
IP Address: 127.0.0.1
IP Address: 127.0.0.1
checksum is c945
Received : Hello server
Received : Hello server
Received : Hello server
Received : Hello server
Received : Hello server
Received : Hello server
Received : Hello server
Received : Hello server
Received : Hello server
Received : Hello server
Received : Hello server
Received : Hello server
Received : Hello server
Received : Hello server
^C
There are many functions used in socket. We can classify those functions based on functionalities.
Create Socket
Bind Socket
Connect Socket
Epoll create1
Epoll_ctl
Epoll_wait
Write data_packet
Read data_packet
Close socket
socket
is used to create a new socket. For example,
sockfd = socket(AF_INET, SOCK_RAW, IPPROTO_TCP);
bind()
is used to associate the socket with a specific address and port. For example,
ret = bind(sockfd, (struct sockaddr*)clientaddr, sizeof(struct sockaddr_in));
connect()
is used in network programming to establish a connection from a client to a server. For example,
ret = connect(sockfd, (struct sockaddr*)serveraddr, sizeof(struct sockaddr_in));
epoll_create1()
creating an epoll instance using epoll_create1, The size parameter is an advisory hint for the kernel regarding the number of file descriptors expected to be monitored, For example,
epoll_fd = epoll_create1(0);
epoll_ctl()
After creating an epoll instance, file descriptors are added to it using epoll_ctl, For example,
ret = epoll_ctl(epoll_fd, EPOLL_CTL_ADD, sockfd, &event);
epoll_wait()
The application then enters a loop where it waits for events using epoll_wait, For example,
ready_fds = epoll_wait(epoll_fd, events, MAX_EVENTS, -1);
write
system call in C is used to write data to a file descriptor, such as a socket.
ret = write(sockfd, buffer, sizeof(buffer));
close
is used to close the socket To free up system resources associated with the socket. For example,
(void)close(sockfd);
See the full program below,
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <signal.h>
#include <errno.h>
#include <netinet/tcp.h>
#include <linux/ip.h>
#include <sys/epoll.h>
#define PORT 50001
#define SERVER_PORT 50000
#define MAX_EVENTS 2
struct sockaddr_in
*serveraddr = NULL,
*clientaddr;
int sockfd;
int epoll_fd;
struct pseudo_iphdr {
unsigned int source_ip_addr;
unsigned int dest_ip_addr;
unsigned char fixed;
unsigned char protocol;
unsigned short tcp_len;
};
unsigned short in_cksum (
uint16_t * addr, int len)
{
int nleft = len;
unsigned int sum = 0;
unsigned short *w = addr;
unsigned short answer = 0;
while (nleft > 1) {
sum += *w++;
nleft -= 2;
}
if (nleft == 1) {
*(unsigned char *) (&answer) =
* (unsigned char *) w;
sum += answer;
}
sum = (sum >> 16) +
(sum & 0xffff);
sum += (sum >> 16);
answer = (unsigned short) ~sum;
return (answer);
}
void interrupt_handler (
int signum)
{
close(sockfd);
free(clientaddr);
exit(0);
}
void validate_convert_addr(
char *ip_str,
struct sockaddr_in *sock_addr)
{
if (ip_str == NULL) {
perror("Invalid ip_str\n");
exit(EXIT_FAILURE);
}
if (sock_addr == NULL) {
perror("Invalid sock_addr\n");
exit(EXIT_FAILURE);
}
printf("IP Address: %s\n", ip_str);
if (inet_pton(AF_INET, ip_str,
&(sock_addr->sin_addr)) <= 0) {
perror("Invalid address\n");
exit(EXIT_FAILURE);
}
}
int main (int argc, char *argv[])
{
char buffer[1024] =
{0};
unsigned char recvbuffer[1024] =
{0};
int length, ret;
int ready_fds;
char *string =
"Hello server";
struct tcphdr *tcp_hdr = NULL;
char *string_data = NULL;
char *recv_string_data = NULL;
char *csum_buffer = NULL;
struct pseudo_iphdr csum_hdr;
struct epoll_event events[MAX_EVENTS];
struct epoll_event event;
if (argc != 2) {
printf("%s<ip-addr>\n",
argv[0]);
exit(EXIT_FAILURE);
}
signal (SIGINT,
interrupt_handler);
signal (SIGTERM,
interrupt_handler);
sockfd = socket(AF_INET,
SOCK_RAW,
IPPROTO_TCP);
if(0 > sockfd) {
printf("create socket\n");
exit(0);
}
clientaddr = (struct sockaddr_in *)malloc(
sizeof(struct sockaddr_in));
if (clientaddr == NULL) {
printf("allocate memory\n");
goto end;
}
clientaddr->sin_family = AF_INET;
clientaddr->sin_port = PORT;
validate_convert_addr(argv[1],
clientaddr);
ret = bind(sockfd,
(struct sockaddr *)clientaddr,
sizeof(struct sockaddr_in));
if (ret < 0) {
printf(" bind\n");
goto end1;
}
serveraddr = (struct sockaddr_in *)malloc(
sizeof(struct sockaddr_in));
if (serveraddr == NULL) {
printf("allocate memory\n");
goto end2;
}
serveraddr->sin_family = AF_INET;
serveraddr->sin_port = SERVER_PORT;
validate_convert_addr(argv[1],
serveraddr);
ret = connect(sockfd,
(struct sockaddr *)serveraddr,
sizeof(struct sockaddr_in));
if (ret != 0) {
printf("error %d", errno);
printf("connect returned error\n");
goto end2;
}
string_data = (char *)
(buffer + sizeof(struct tcphdr));
strncpy(string_data, string,
strlen(string));
tcp_hdr = (struct tcphdr *)buffer;
tcp_hdr->source = htons(PORT);
tcp_hdr->dest = htons(SERVER_PORT);
tcp_hdr->ack_seq = 0x0;
tcp_hdr->doff = 5;
tcp_hdr->syn = 1;
tcp_hdr->window = htons(200);
csum_buffer = (char *)calloc(
(sizeof(struct pseudo_iphdr) +
sizeof(struct tcphdr) +
strlen(string_data)), sizeof(char));
if (csum_buffer == NULL) {
printf("allocate csum buffer\n");
goto end1;
}
csum_hdr.source_ip_addr =
inet_addr("192.168.1.14");
csum_hdr.dest_ip_addr =
inet_addr("192.168.1.11");
csum_hdr.fixed = 0;
csum_hdr.protocol =
IPPROTO_TCP;
csum_hdr.tcp_len =
htons(sizeof(struct tcphdr) +
strlen(string_data) + 1);
memcpy(csum_buffer,
(char *)&csum_hdr,
sizeof(struct pseudo_iphdr));
memcpy(csum_buffer +
sizeof(struct pseudo_iphdr),
buffer, (sizeof(struct tcphdr) +
strlen(string_data) + 1));
tcp_hdr->check = (in_cksum(
(unsigned short *) csum_buffer,
(sizeof(struct pseudo_iphdr)+
sizeof(struct tcphdr) +
strlen(string_data) + 1)));
printf("checksum is %x",
tcp_hdr->check);
free (csum_buffer);
epoll_fd = epoll_create1(0);
if (epoll_fd < 0) {
perror("Epoll creation failed");
exit(EXIT_FAILURE);
}
event.events = EPOLLIN | EPOLLET;
event.data.fd = sockfd;
ret = epoll_ctl(epoll_fd,
EPOLL_CTL_ADD, sockfd, &event);
if (ret < 0) {
perror("Epoll_ctl failed");
exit(EXIT_FAILURE);
}
while (1) {
ret = write(sockfd,
buffer, sizeof(buffer));
if (ret < 0) {
perror("read error");
break;
}
ready_fds = epoll_wait(epoll_fd,
events, MAX_EVENTS, -1);
if (ready_fds == -1) {
perror("Epoll wait failed");
exit(EXIT_FAILURE);
}
if (events[0].data.fd ==
sockfd) {
memset(recvbuffer, 0,
sizeof(recvbuffer));
ret = read(sockfd,
recvbuffer, sizeof(recvbuffer));
if (ret < 0) {
perror("read error");
break;
}
tcp_hdr = (struct tcphdr *)
(recvbuffer + sizeof (struct iphdr));
recv_string_data = (char *)
(recvbuffer + sizeof (struct iphdr) +
sizeof (struct tcphdr));
if (PORT == ntohs(tcp_hdr->dest)) {
printf("Received : %s\n",
recv_string_data);
}
}
}
end2:
free(serveraddr);
end1:
free(clientaddr);
end:
(void)close(sockfd);
return 0;
}
$ gcc -o client client.c
$ sudo ./client 127.0.0.1
IP Address: 127.0.0.1
IP Address: 127.0.0.1
checksum is c135
Received : Hello client
Received : Hello client
Received : Hello client
Received : Hello client
Received : Hello client
Received : Hello client
Received : Hello client
Received : Hello client
Received : Hello client
Received : Hello client
Received : Hello client
Received : Hello client
Received : Hello client
^C
Default Domain:
By default, the socket is configured to work in the
AF_INET
domain, handling all types of network data.
Additional Domain Support:
We expand the socket’s capabilities to also function in the
PF_INET
domain, allowing it to operate similarly toAF_INET
.
Socket Creation:
We set up a network connection point known as a socket using
socket(PF_INET, SOCK_RAW, IPPROTO_TCP)
.
Working Scenario:
Despite the change in domain to
PF_INET
, the socket continues to operate the same way, handling general network data.
Socket API |
Learning |
---|---|
socket |
Create a new socket |
epoll |
handles a set of file descriptors with different states, such as reading, writing, and exceptions, by using the struct epoll_event structure and the associated event flags.. |
write |
used to write data to a file descriptor, such as a socket. |
read |
used to read data from a file descriptor, such as a socket. |
Previous topic
Current topic
Next topic
Other sockets
Other IPCs