IPV4 RAW AF INET TCP server client program with Select system call
In this program, you are going to learn
How to create a Socket ?
How to write a data ?
How to read a data ?
Let us answer few basic questions in this socket
What does socket(AF_INET, SOCK_RAW, IPPROTO_TCP)
do?
See Answer
This call creates a raw socket in the AF_INET
address family for direct access to TCP packets.
When is it appropriate to use SOCK_RAW
sockets with TCP?
See Answer
It’s suitable for tasks like packet capturing, network monitoring, or implementing custom protocols where direct access to TCP packets is needed.
Can this socket be used for regular TCP communication?
See Answer
While technically possible, it’s not recommended for regular communication due to increased complexity and potential security risks.
How does a raw TCP socket differ from a regular TCP socket?
See Answer
A raw TCP socket provides direct access to the TCP layer, allowing for manual packet manipulation, whereas regular TCP sockets handle packet details internally.
What are some use cases for raw TCP sockets?
See Answer
Use cases include network sniffing, packet analysis, security auditing, and developing custom network protocols.
How can I capture and analyze TCP packets using raw sockets?
See Answer
You can use the raw socket to capture TCP packets and analyze them using packet analysis tools like Wireshark.
Is error checking needed after creating the socket?
See Answer
Yes, checking for errors ensures that the socket is created successfully before proceeding with further operations.
Why is it important to check the return value of read() and write() in socket programming?
See Answer
It detects issues such as network errors or closed connections.
What is the purpose of the select system call in network programming?
See Answer
To block and wait for activity on one or more file descriptors.
How does select help in handling multiple sockets efficiently?
See Answer
It provides a way to wait for readiness on multiple sockets without blocking the entire program.
What types of file descriptors can be monitored using select?
See Answer
sockets, files, timerfd, socketpair, message_queue, Namedpipes and shared_memory.
What is the significance of the timeout parameter in the select function?
See Answer
It specifies the maximum duration to wait for any file descriptor to become ready.
How do you handle errors when using the select system call?
See Answer
Check the return value for -1 to detect errors, Use perror to print error messages.
How does select handle a set of file descriptors with different states (e.g., reading, writing, exception)?
See Answer
- Preparing File Descriptor Sets:
select(readfds, writefds, exceptfds);
- Setting Up Readiness Conditions:
If you are interested in monitoring file descriptors for readability, you add them to the readfds set.
FD_ZERO(&readfds);
FD_SET(fd1, &readfds);
- Setting Up Writability Conditions:
If you are interested in monitoring file descriptors for writability, you add them to the writefds set.
FD_ZERO(&writefds);
FD_SET(fd2, &writefds);
- Setting Up Exceptional Conditions:
If you are interested in monitoring file descriptors for exceptional conditions, you add them to the exceptfds set.
FD_ZERO(&exceptfds);
FD_SET(fd3, &exceptfds);
How does select Checking Ready File Descriptors?
See Answer
After select returns, you can check the sets to determine which file descriptors are ready for the specified conditions.
if (FD_ISSET(fd1, &readfds)) {
// fd1 is ready for reading
}
if (FD_ISSET(fd3, &writefds)) {
// fd2 is ready for writing
}
if (FD_ISSET(fd4, &exceptfds)) {
// fd3 has an exceptional condition
}
What does it mean if select returns 0?
See Answer
No file descriptors are ready within the specified timeout.
There are many functions used in socket. We can classify those functions based on functionalities.
Create Socket
Bind Socket
Connect Socket
Select
Write data_packet
Read data_packet
Close socket
socket()
is used to create a new socket. For example,
sock_fd = socket(AF_INET, SOCK_RAW, IPPROTO_TCP);
bind()
is used to associate the socket with a specific address and port. For example,
ret = bind(sock_fd, (struct sockaddr*)servaddr, sizeof(struct sockaddr_in));
connect()
is used in network programming to establish a connection from a client to a server. For example,
ret = connect(sock_fd, (struct sockaddr*)client_addr, sizeof(struct sockaddr_in));
select()
is used in network programming to monitor multiple file descriptors (usually sockets) for read, write, or error conditions. For example,
ret = select(sock_fd + 1, &read_fds, NULL, NULL, NULL);
read
system call in C is commonly used to read data from a file descriptor, such as a socket.
ret = read(sock_fd, recvbuffer, sizeof(recvbuffer));
write
system call in C is used to write data to a file descriptor, such as a socket.
ret = write(sock_fd, buffer, sizeof(buffer));
close
is used to close the socket To free up system resources associated with the socket. For example,
(void)close(sock_fd);
See the full program below,
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <signal.h>
#include <errno.h>
#include <linux/ip.h>
#include <netinet/tcp.h>
#define PORT 50000
#define PORT_CLIENT 50001
struct sockaddr_in
*servaddr = NULL,
*client_addr = NULL;
int sock_fd;
struct pseudo_iphdr {
unsigned int source_ip_addr;
unsigned int dest_ip_addr;
unsigned char fixed;
unsigned char protocol;
unsigned short tcp_len;
};
unsigned short in_cksum (
uint16_t * addr, int len)
{
int nleft = len;
unsigned int sum = 0;
unsigned short *w = addr;
unsigned short answer = 0;
while (nleft > 1) {
sum += *w++;
nleft -= 2;
}
if (nleft == 1) {
*(unsigned char *)
(&answer) =
* (unsigned char *) w;
sum += answer;
}
sum = (sum >> 16) +
(sum & 0xffff);
sum += (sum >> 16);
answer =
(unsigned short) ~sum;
return (answer);
}
void interrupt_handler (
int signum) {
close(sock_fd);
free(client_addr);
exit(0);
}
void validate_convert_addr(
char *ip_str,
struct sockaddr_in *sock_addr)
{
if (ip_str == NULL) {
perror("Invalid ip_str\n");
exit(EXIT_FAILURE);
}
if (sock_addr == NULL) {
perror("Invalid sock_addr\n");
exit(EXIT_FAILURE);
}
printf("IP Address: %s\n", ip_str);
if (inet_pton(AF_INET, ip_str,
&(sock_addr->sin_addr)) <= 0) {
perror("Invalid address\n");
exit(EXIT_FAILURE);
}
}
int main (int argc, char *argv[])
{
char buffer[1024] =
{0};
unsigned char recvbuffer[1024] =
{0};
int length, ret;
char *string =
"Hello client";
struct tcphdr *tcp_hdr = NULL;
char *string_data = NULL;
char *recv_string_data = NULL;
char *csum_buffer = NULL;
struct pseudo_iphdr
csum_hdr;
signal (SIGINT,
interrupt_handler);
signal (SIGTERM,
interrupt_handler);
if (argc != 2) {
printf("%s<ip-addr>\n",
argv[0]);
exit(EXIT_FAILURE);
}
sock_fd = socket(AF_INET,
SOCK_RAW,
IPPROTO_TCP);
if(0 > sock_fd) {
printf("unable to create\n");
exit(0);
}
servaddr = (struct sockaddr_in *)malloc(
sizeof(struct sockaddr_in));
if (servaddr == NULL) {
printf("could not allocate memory\n");
goto end;
}
servaddr->sin_family = AF_INET;
servaddr->sin_port = PORT;
validate_convert_addr(argv[1],
servaddr);
ret = bind(sock_fd,
(struct sockaddr *)servaddr,
sizeof(struct sockaddr_in));
if (ret < 0) {
printf("bind\n");
goto end1;
}
client_addr = (struct sockaddr_in *)malloc(
sizeof(struct sockaddr_in));
if (client_addr == NULL) {
printf("allocation memory\n");
goto end2;
}
client_addr->sin_family = AF_INET;
client_addr->sin_port =
PORT_CLIENT;
validate_convert_addr(argv[1],
client_addr);
ret = connect(sock_fd,
(struct sockaddr *)client_addr,
sizeof(struct sockaddr_in));
if (ret != 0) {
printf("error %d", errno);
printf("connect returned error\n");
goto end2;
}
string_data = (char *)
(buffer + sizeof(struct tcphdr));
strncpy(string_data, string,
strlen(string));
tcp_hdr = (struct tcphdr *)buffer;
tcp_hdr->source = htons(PORT);
tcp_hdr->dest =
htons(PORT_CLIENT);
tcp_hdr->ack_seq = 0x0;
tcp_hdr->doff = 5;
tcp_hdr->syn = 1;
tcp_hdr->window = htons(200);
csum_buffer = (char *)calloc((
sizeof(struct pseudo_iphdr) +
sizeof(struct tcphdr) +
strlen(string_data)),
sizeof(char));
if (csum_buffer == NULL) {
printf("allocate csum buffer\n");
goto end1;
}
csum_hdr.source_ip_addr =
inet_addr("192.168.1.11");
csum_hdr.dest_ip_addr =
inet_addr("192.168.1.14");
csum_hdr.fixed = 0;
csum_hdr.protocol =
IPPROTO_TCP;
csum_hdr.tcp_len =
htons(sizeof(struct tcphdr) +
strlen(string_data) + 1);
memcpy(csum_buffer, (char *)&csum_hdr,
sizeof(struct pseudo_iphdr));
memcpy(csum_buffer +
sizeof(struct pseudo_iphdr), buffer,
(sizeof(struct tcphdr) +
strlen(string_data) + 1));
tcp_hdr->check = (in_cksum(
(unsigned short *) csum_buffer,
(sizeof(struct pseudo_iphdr)+
sizeof(struct tcphdr) + strlen(string_data) + 1)));
printf("checksum is %x", tcp_hdr->check);
free (csum_buffer);
fd_set read_fds;
while (1) {
FD_ZERO(&read_fds);
FD_SET(sock_fd, &read_fds);
ret = select(sock_fd + 1,
&read_fds, NULL, NULL, NULL);
if (ret == -1) {
perror("select\n");
break;
}
if(FD_ISSET(sock_fd,
&read_fds)) {
memset(recvbuffer, 0,
sizeof(recvbuffer));
ret = read(sock_fd, recvbuffer,
sizeof(recvbuffer));
if (ret == -1) {
perror("read error");
break;
}
tcp_hdr = (struct tcphdr *)
(recvbuffer + sizeof (struct iphdr));
recv_string_data = (char *)
(recvbuffer + sizeof (struct iphdr) +
sizeof (struct tcphdr));
if (PORT == ntohs(tcp_hdr->dest)) {
printf("Received : %s\n", recv_string_data);
}
ret = write(sock_fd, buffer,
sizeof(buffer));
if (ret == -1) {
perror("write error");
break;
}
}
}
end2:
free(client_addr);
end1:
free(servaddr);
end:
(void)close(sock_fd);
return 0;
}
$ gcc -o server server.c
$ sudo ./server 127.0.0.1
IP Address: 127.0.0.1
IP Address: 127.0.0.1
checksum is c945
Received : Hello server
Received : Hello server
Received : Hello server
Received : Hello server
Received : Hello server
Received : Hello server
Received : Hello server
Received : Hello server
Received : Hello server
Received : Hello server
Received : Hello server
Received : Hello server
Received : Hello server
Received : Hello server
^C
There are many functions used in socket. We can classify those functions based on functionalities.
Create Socket
Bind Socket
Connect Socket
Select
Write data_packet
Read data_packet
Close socket
socket
is used to create a new socket. For example,
sockfd = socket(AF_INET, SOCK_RAW, IPPROTO_TCP);
bind()
is used to associate the socket with a specific address and port. For example,
ret = bind(sockfd, (struct sockaddr*)clientaddr, sizeof(struct sockaddr_in));
connect()
is used in network programming to establish a connection from a client to a server. For example,
ret = connect(sockfd, (struct sockaddr*)serveraddr, sizeof(struct sockaddr_in));
select
is used in network programming to monitor multiple file descriptors (usually sockets) for read, write, or error conditions. For example,
ret = select(sockfd + 1, &read_fds, NULL, NULL, NULL);
read
system call in C is commonly used to read data from a file descriptor, such as a socket.
ret = read(sockfd, recvbuffer, sizeof(recvbuffer));
write
system call in C is used to write data to a file descriptor, such as a socket.
ret = write(sockfd, buffer, sizeof(buffer));
close
is used to close the socket To free up system resources associated with the socket. For example,
(void)close(sockfd);
See the full program below,
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <signal.h>
#include <errno.h>
#include <netinet/tcp.h>
#include <linux/ip.h>
#define PORT 50001
#define SERVER_PORT 50000
struct sockaddr_in
*serveraddr = NULL,
*clientaddr;
int sockfd;
struct pseudo_iphdr {
unsigned int source_ip_addr;
unsigned int dest_ip_addr;
unsigned char fixed;
unsigned char protocol;
unsigned short tcp_len;
};
unsigned short in_cksum (
uint16_t * addr, int len)
{
int nleft = len;
unsigned int sum = 0;
unsigned short *w = addr;
unsigned short answer = 0;
while (nleft > 1) {
sum += *w++;
nleft -= 2;
}
if (nleft == 1) {
*(unsigned char *) (&answer) =
* (unsigned char *) w;
sum += answer;
}
sum = (sum >> 16) +
(sum & 0xffff);
sum += (sum >> 16);
answer = (unsigned short) ~sum;
return (answer);
}
void interrupt_handler (
int signum)
{
close(sockfd);
free(clientaddr);
exit(0);
}
void validate_convert_addr(
char *ip_str,
struct sockaddr_in *sock_addr)
{
if (ip_str == NULL) {
perror("Invalid ip_str\n");
exit(EXIT_FAILURE);
}
if (sock_addr == NULL) {
perror("Invalid sock_addr\n");
exit(EXIT_FAILURE);
}
printf("IP Address: %s\n", ip_str);
if (inet_pton(AF_INET, ip_str,
&(sock_addr->sin_addr)) <= 0) {
perror("Invalid address\n");
exit(EXIT_FAILURE);
}
}
int main (int argc, char *argv[])
{
char buffer[1024] =
{0};
unsigned char recvbuffer[1024] =
{0};
int length, ret;
char *string =
"Hello server";
struct tcphdr *tcp_hdr = NULL;
char *string_data = NULL;
char *recv_string_data = NULL;
char *csum_buffer = NULL;
struct pseudo_iphdr csum_hdr;
signal (SIGINT,
interrupt_handler);
signal (SIGTERM,
interrupt_handler);
if (argc != 2) {
printf("%s<ip-addr>\n",
argv[0]);
exit(EXIT_FAILURE);
}
sockfd = socket(AF_INET,
SOCK_RAW,
IPPROTO_TCP);
if(0 > sockfd) {
printf("create socket\n");
exit(0);
}
clientaddr = (struct sockaddr_in *)malloc(
sizeof(struct sockaddr_in));
if (clientaddr == NULL) {
printf("allocate memory\n");
goto end;
}
clientaddr->sin_family = AF_INET;
clientaddr->sin_port = PORT;
validate_convert_addr(argv[1],
clientaddr);
ret = bind(sockfd,
(struct sockaddr *)clientaddr,
sizeof(struct sockaddr_in));
if (ret < 0) {
printf(" bind\n");
goto end1;
}
serveraddr = (struct sockaddr_in *)malloc(
sizeof(struct sockaddr_in));
if (serveraddr == NULL) {
printf("allocate memory\n");
goto end2;
}
serveraddr->sin_family = AF_INET;
serveraddr->sin_port = SERVER_PORT;
validate_convert_addr(argv[1],
serveraddr);
ret = connect(sockfd,
(struct sockaddr *)serveraddr,
sizeof(struct sockaddr_in));
if (ret != 0) {
printf("error %d", errno);
printf("connect returned error\n");
goto end2;
}
string_data = (char *)
(buffer + sizeof(struct tcphdr));
strncpy(string_data, string,
strlen(string));
tcp_hdr = (struct tcphdr *)buffer;
tcp_hdr->source = htons(PORT);
tcp_hdr->dest = htons(SERVER_PORT);
tcp_hdr->ack_seq = 0x0;
tcp_hdr->doff = 5;
tcp_hdr->syn = 1;
tcp_hdr->window = htons(200);
csum_buffer = (char *)calloc(
(sizeof(struct pseudo_iphdr) +
sizeof(struct tcphdr) +
strlen(string_data)), sizeof(char));
if (csum_buffer == NULL) {
printf("allocate csum buffer\n");
goto end1;
}
csum_hdr.source_ip_addr =
inet_addr("192.168.1.14");
csum_hdr.dest_ip_addr =
inet_addr("192.168.1.11");
csum_hdr.fixed = 0;
csum_hdr.protocol =
IPPROTO_TCP;
csum_hdr.tcp_len =
htons(sizeof(struct tcphdr) +
strlen(string_data) + 1);
memcpy(csum_buffer,
(char *)&csum_hdr,
sizeof(struct pseudo_iphdr));
memcpy(csum_buffer +
sizeof(struct pseudo_iphdr),
buffer, (sizeof(struct tcphdr) +
strlen(string_data) + 1));
tcp_hdr->check = (in_cksum(
(unsigned short *) csum_buffer,
(sizeof(struct pseudo_iphdr)+
sizeof(struct tcphdr) +
strlen(string_data) + 1)));
printf("checksum is %x",
tcp_hdr->check);
free (csum_buffer);
fd_set read_fds;
while (1) {
ret = write(sockfd,
buffer, sizeof(buffer));
if (ret < 0) {
perror("read error");
break;
}
FD_ZERO(&read_fds);
FD_SET(sockfd, &read_fds);
ret = select(sockfd + 1,
&read_fds, NULL, NULL, NULL);
if (ret < 0) {
perror("select\n");
break;
}
if(FD_ISSET(sockfd,
&read_fds)) {
memset(recvbuffer, 0,
sizeof(recvbuffer));
ret = read(sockfd,
recvbuffer, sizeof(recvbuffer));
if (ret < 0) {
perror("read error");
break;
}
tcp_hdr = (struct tcphdr *)
(recvbuffer + sizeof (struct iphdr));
recv_string_data = (char *)
(recvbuffer + sizeof (struct iphdr) +
sizeof (struct tcphdr));
if (PORT == ntohs(tcp_hdr->dest)) {
printf("Received : %s\n",
recv_string_data);
}
}
}
end2:
free(serveraddr);
end1:
free(clientaddr);
end:
(void)close(sockfd);
return 0;
}
$ gcc -o client client.c
$ sudo ./client 127.0.0.1
IP Address: 127.0.0.1
IP Address: 127.0.0.1
checksum is c135
Received : Hello client
Received : Hello client
Received : Hello client
Received : Hello client
Received : Hello client
Received : Hello client
Received : Hello client
Received : Hello client
Received : Hello client
Received : Hello client
Received : Hello client
Received : Hello client
Received : Hello client
^C
Default Domain:
By default, the socket is configured to work in the
AF_INET
domain, handling all types of network data.
Additional Domain Support:
We expand the socket’s capabilities to also function in the
PF_INET
domain, allowing it to operate similarly toAF_INET
.
Socket Creation:
We set up a network connection point known as a socket using
socket(PF_INET, SOCK_RAW, IPPROTO_TCP)
.
Working Scenario:
Despite the change in domain to
PF_INET
, the socket continues to operate the same way, handling general network data.
Socket API |
Learning |
---|---|
socket |
Create a new socket |
select |
Monitor multiple file descriptors (usually sockets) for read, write, or error conditions. |
write |
used to write data to a file descriptor, such as a socket. |
read |
used to read data from a file descriptor, such as a socket. |
Previous topic
Current topic
Next topic
Other sockets
Other IPCs