IPV6 TCP server client program with Poll system call
In this program, you are going to learn
How to create a Socket ?
How to bind a socket ?
How to listen a socket ?
How to connect a socket ?
How to accept a socket ?
How to send a data ?
How to recv a data ?
Before executing the program that relies on IPv6, enable the loopback interface for IPv6 using the following command:
sudo sysctl -w net.ipv6.conf.lo.disable_ipv6=0
This command sets the disable_ipv6 parameter to 0 for the loopback interface (lo), allowing IPv6 functionality.
Ensure to use this command cautiously and consider the implications, especially on production systems.
After enabling IPv6, proceed to execute your program that relies on IPv6 functionality.
Let us answer few basic questions in this socket
What does socket(AF_INET6, SOCK_STREAM, IPPROTO_TCP)
do?
See Answer
This call creates a TCP socket in the AF_INET6
(IPv6) address family.
When is it appropriate to use SOCK_STREAM
with IPv6?
See Answer
For reliable, connection-oriented communication.
What privileges are required to create an IPv6 TCP socket?
See Answer
No special privileges.
Can socket(AF_INET6, SOCK_STREAM, IPPROTO_TCP)
be used for regular UDP communication?
See Answer
No, it is designed only for TCP communication.
How does an IPv6 TCP socket differ from an IPv4 TCP socket?
See Answer
IPv6 sockets handle communication using IPv6 addresses.
Can I use IPv6 TCP sockets in a mixed IPv4/IPv6 environment?
See Answer
Yes, most modern systems support IPv6.
How do I specify a port number for an IPv6 TCP socket?
See Answer
Set the port number in the sin6_port field.
Can I use IPv6 TCP sockets for non-blocking I/O?
See Answer
Yes, use setsockopt to enable non-blocking mode.
How do I handle connection establishment with IPv6 TCP sockets?
See Answer
Use the bind and listen functions.
Are there any compatibility issues with older systems when using IPv6 TCP sockets?
See Answer
Yes, older systems may lack IPv6 support.
How do I handle IPv6 DNS resolution in my application?
See Answer
Use functions like getaddrinfo to resolve hostnames.
How should you handle errors when using accept() in socket programming?
See Answer
Check the return value and handle errors appropriately
Why is it important to check the return value of send() and recv() in socket programming?
See Answer
It detects issues such as network errors or closed connections.
Can you use a TCP socket (SOCK_STREAM) for sending and receiving data concurrently between a client and server?
See Answer
Yes, TCP sockets support bidirectional communication.
What is the purpose of the poll system call?
See Answer
To block and wait for activity on one or more file descriptors.
How does poll differ from poll in terms of usability?
See Answer
poll is more efficient than poll for monitoring multiple file descriptors.
What types of file descriptors can be monitored using poll?
See Answer
sockets, files, timerfd, socketpair, message_queue, Namedpipes and shared_memory.
How does poll handle a set of file descriptors with different states (e.g., reading, writing, exception)?
See Answer
It uses different structures for each state in the pollfd array.
How do you handle errors when using the poll system call?
See Answer
Check the return value for -1 to detect errors, Use perror to print error messages.
How does poll handle a set of file descriptors with different states (e.g., reading, writing, exception)?
See Answer
- Array of pollfd Structures:
Before calling poll, you need to create an array of pollfd structures, where each structure represents a file descriptor and its associated events.
struct pollfd fds[NUM_FDS];
NUM_FDS is the number of file descriptors you want to monitor.
- Initialize pollfd Structures:
For each file descriptor you want to monitor, initialize the corresponding pollfd structure with the following information:
fd: The file descriptor to monitor. events: The events of interest (e.g., POLLIN for readability, POLLOUT for writability). revents: Initially set to zero. After the poll call, this field is updated to indicate the events that occurred.
fds[0].fd = fd1;
fds[0].events = POLLIN;
fds[0].revents = 0;
fds[1].fd = fd2;
fds[1].events = POLLIN;
fds[1].revents = 0;
- Call poll:
After initializing the pollfd array, call the poll function, providing the array, the number of file descriptors, and a timeout
int ready_fds = poll(fds, NUM_FDS, timeout_ms);
ready_fds will contain the number of file descriptors that are ready.
How does poll Checking Ready File Descriptors?
See Answer
After the poll call, loop through the pollfd array and check the revents field for each file descriptor to determine which events occurred.
for (int i = 0; i < NUM_FDS; ++i) {
if (fds[i].revents & POLLIN) {
// File descriptor i is ready for reading
}
if (fds[i].revents & POLLOUT) {
// File descriptor i is ready for writing
}
// Check other events if needed (e.g., POLLERR, POLLHUP)
}
What does it mean if poll returns 0?
See Answer
No file descriptors are ready within the specified timeout.
There are many functions used in socket. We can classify those functions based on functionalities.
Create Socket
Bind Socket
Listen Socket
Poll
Accept Socket
Recv data_packet
Send data_packet
Close socket
socket()
is used to create a new socket. For example,
tcp_server_fd = socket(AF_INET6, SOCK_STREAM, IPPROTO_TCP);
bind()
is used to associate the socket with a specific address and port. For example,
ret = bind(tcp_server_fd, (struct sockaddr*)&tcp_addr, sizeof(tcp_addr));
listen()
is used to set up a socket to accept incoming connections. For example,
ret = listen(tcp_server_fd, MAX_CLIENTS);
poll()
is used for monitoring multiple file descriptors to see if I/O is possible on any of them.
ret = poll(fds, MAX_CLIENTS + 1, -1);
accept()
is used in network programming on the server side to accept a connection request from a client. For example,
tcp_client_fd = accept(tcp_server_fd, (struct sockaddr*) &tcp_addr, &tcp_addr_len);
recv
is used in network programming to receive data from a connected socket. For example,
len = recv(tcp_client_id, buffer, sizeof(buffer) - 1, 0);
send
is used in network programming to send data over a connected socket. For example,
ret = send(tcp_client_fd, buffer, strlen(buffer), 0);
close
is used to close the socket To free up system resources associated with the socket. For example,
(void)close(tcp_client_fd);
See the full program below,
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <sys/types.h>
#include <arpa/inet.h>
#include <sys/un.h>
#include <signal.h>
#include <poll.h>
#define MAX_CLIENTS 5
int tcp_server_fd = -1;
int tcp_client_fd = -1;
static void sigint_handler(int signo)
{
(void)close(tcp_server_fd);
(void)close(tcp_client_fd);
sleep(2);
printf("Caught sigINT!\n");
exit(EXIT_SUCCESS);
}
void register_signal_handler(
int signum,
void (*handler)(int))
{
if (signal(signum, handler) == SIG_ERR) {
printf("Cannot handle signal\n");
exit(EXIT_FAILURE);
}
}
void validate_convert_port(
char *port_str,
struct sockaddr_in6 *sock_addr)
{
int port;
if (port_str == NULL) {
perror("Invalid port_str\n");
exit(EXIT_FAILURE);
}
if (sock_addr == NULL) {
perror("Invalid sock_addr\n");
exit(EXIT_FAILURE);
}
port = atoi(port_str);
if (port == 0) {
perror("Invalid port\n");
exit(EXIT_FAILURE);
}
sock_addr->sin6_port = htons(
(uint16_t)port);
printf("Port: %d\n",
ntohs(sock_addr->sin6_port));
}
void validate_convert_addr(
char *ip_str,
struct sockaddr_in6 *sock_addr)
{
if (ip_str == NULL) {
perror("Invalid ip_str\n");
exit(EXIT_FAILURE);
}
if (sock_addr == NULL) {
perror("Invalid sock_addr\n");
exit(EXIT_FAILURE);
}
printf("IP Address: %s\n", ip_str);
if (inet_pton(AF_INET6, ip_str,
&(sock_addr->sin6_addr)) <= 0) {
perror("Invalid address\n");
exit(EXIT_FAILURE);
}
}
void recv_send(char *buffer)
{
int len, ret;
memset(buffer, 0,
sizeof(buffer));
len = recv(tcp_client_fd, buffer,
sizeof(buffer) - 1, 0);
if (len > 0) {
buffer[len] = '\0';
printf("Received: %s\n",
buffer);
memset(buffer, 0,
sizeof(buffer));
strncpy(buffer, "HELLO",
strlen("HELLO") + 1);
buffer[strlen(buffer) + 1] = '\0';
printf("Sentbuffer = %s\n",
buffer);
ret = send(tcp_client_fd, buffer,
strlen(buffer), 0);
if (ret < 0) {
perror("send error\n");
(void)close(tcp_client_fd);
(void)close(tcp_server_fd);
exit(EXIT_FAILURE);
}
} else if (len < 0) {
perror("recv");
(void)close(tcp_client_fd);
(void)close(tcp_server_fd);
exit(EXIT_FAILURE);
}
}
int main(int argc, char *argv[])
{
int len, ret;
struct sockaddr_in6
tcp_addr;
char buffer[1024];
struct pollfd fds[MAX_CLIENTS + 1];
socklen_t tcp_addr_len = sizeof(
tcp_addr);
register_signal_handler(SIGINT,
sigint_handler);
if (argc != 3) {
printf("%s<port-number><ip-addr>",
argv[0]);
return -1;;
}
memset(&tcp_addr, 0,
sizeof(tcp_addr));
tcp_addr.sin6_family = AF_INET6;
validate_convert_port(argv[1],
&tcp_addr);
validate_convert_addr(argv[2],
&tcp_addr);
tcp_server_fd = socket(AF_INET6,
SOCK_STREAM,
IPPROTO_TCP);
if (tcp_server_fd < 0) {
perror("socket");
return -2;
}
ret = bind(tcp_server_fd,
(struct sockaddr *)&tcp_addr,
sizeof(tcp_addr));
if (ret < 0) {
perror("bind");
(void)close(tcp_server_fd);
return -3;
}
ret = listen(tcp_server_fd,
MAX_CLIENTS);
if (ret < 0) {
perror("listen");
(void)close(tcp_server_fd);
return -4;
}
(void)printf("Serverlistening...\n");
tcp_client_fd = accept(tcp_server_fd,
(struct sockaddr *) &tcp_addr,
&tcp_addr_len);
if (tcp_client_fd < 0) {
perror("accept");
(void)close(tcp_server_fd);
return -5;
}
(void)printf("Connection Accept\n");
memset(fds, 0, sizeof(fds));
fds[0].fd = tcp_client_fd;
fds[0].events = POLLIN;
while (1) {
ret = poll(fds, MAX_CLIENTS + 1, -1);
if (ret == -1) {
perror("poll");
break;
}
if (fds[0].revents & POLLIN) {
recv_send(buffer);
}
}
(void)close(tcp_client_fd);
(void)close(tcp_server_fd);
return 0;
}
1$ gcc -o server server.c
2
3$ sudo ./server 8080 ::1
4
5Port: 8080
6IP Address: ::1
7Serverlistening...
8Connection Accept
9Received: HI
10Sentbuffer = HELLO
11Received: HI
12Sentbuffer = HELLO
13Received: HI
14Sentbuffer = HELLO
15Received: HI
16Sentbuffer = HELLO
17Received: HI
18Sentbuffer = HELLO
19Received: HI
20Sentbuffer = HELLO
21Received: HI
22^CCaught sigINT!
There are many functions used in socket. We can classify those functions based on functionalities.
Create Socket
Connect Socket
Poll
Recv data_packet
Send data_packet
Close socket
socket
is used to create a new socket. For example,
client_fd = socket(AF_INET6, SOCK_STREAM, IPPROTO_TCP);
connect
is used in network programming to establish a connection from a client to a server. For example,
cli_connect = connect(client_fd, (struct sockaddr*)&tcp_addr, tcp_addr_len);
poll()
is used for monitoring multiple file descriptors to see if I/O is possible on any of them.
ret = poll(fds, 2, -1);
send
is used in network programming to send data over a connected socket. For example,
ret = send(client_fd, buffer, strlen(buffer), 0);
recv
is used in network programming to receive data from a connected socket. For example,
len = recv(client_fd, buffer, sizeof(buffer) - 1, 0);
close
is used to close the socket To free up system resources associated with the socket. For example,
(void)close(client_fd);
See the full program below,
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <sys/types.h>
#include <arpa/inet.h>
#include <sys/un.h>
#include <signal.h>
#include <poll.h>
int client_fd;
static void sigint_handler(int signo)
{
(void)close(client_fd);
sleep(2);
(void)printf("Caught sigINT!\n");
exit(EXIT_SUCCESS);
}
void validate_convert_port(
char *port_str,
struct sockaddr_in6 *sock_addr)
{
int port;
if (port_str == NULL) {
perror("Invalid port_str\n");
exit(EXIT_FAILURE);
}
if (sock_addr == NULL) {
perror("Invalid sock_addr\n");
exit(EXIT_FAILURE);
}
port = atoi(port_str);
if (port == 0) {
perror("Invalid port\n");
exit(EXIT_FAILURE);
}
sock_addr->sin6_port = htons(
(uint16_t)port);
printf("Port: %d\n",
ntohs(sock_addr->sin6_port));
}
void validate_convert_addr(
char *ip_str,
struct sockaddr_in6 *sock_addr)
{
if (ip_str == NULL) {
perror("Invalid ip_str\n");
exit(EXIT_FAILURE);
}
if (sock_addr == NULL) {
perror("Invalid sock_addr\n");
exit(EXIT_FAILURE);
}
printf("IP Address: %s\n", ip_str);
if (inet_pton(AF_INET6, ip_str,
&(sock_addr->sin6_addr)) <= 0) {
perror("Invalid address\n");
exit(EXIT_FAILURE);
}
}
void recv_data(char *buffer)
{
int ret, len;
len = recv(client_fd, buffer,
sizeof(buffer) - 1, 0);
if (len > 0) {
buffer[len] = '\0';
(void)printf("Received: %s\n",
buffer);
} else if (len == 0) {
printf("Connection closed\n");
exit(EXIT_FAILURE);
}
}
void send_data(char *buffer)
{
int ret;
memset(buffer, 0,
sizeof(buffer));
strncpy(buffer, "HI",
strlen("HI") + 1);
buffer[strlen(buffer) + 1] = '\0';
ret = send(client_fd, buffer,
strlen(buffer), 0);
if (ret < 0) {
perror("send error\n");
(void)close(client_fd);
exit(EXIT_FAILURE);
}
printf("sentbuffer = %s\n",
buffer);
}
void register_signal_handler(
int signum,
void (*handler)(int))
{
if (signal(signum, handler) == SIG_ERR)
{
printf("Cannot handle signal\n");
exit(EXIT_FAILURE);
}
}
int main(int argc, char *argv[])
{
int cli_connect;
int ret, len;
struct sockaddr_in6
tcp_addr;
char buffer[1024];
struct pollfd fds[2];
socklen_t tcp_addr_len = sizeof(
tcp_addr);
register_signal_handler(SIGINT,
sigint_handler);
if (argc != 3) {
printf("%s<port-number><ip-addr>\n",
argv[0]);
exit(EXIT_FAILURE);
}
memset(&tcp_addr, 0,
sizeof(tcp_addr));
tcp_addr.sin6_family = AF_INET6;
validate_convert_port(argv[1],
&tcp_addr);
validate_convert_addr(argv[2],
&tcp_addr);
client_fd = socket(AF_INET6,
SOCK_STREAM,
IPPROTO_TCP);
if (client_fd < 0) {
perror("socket");
return -1;
}
cli_connect = connect(client_fd,
(struct sockaddr *)&tcp_addr,
tcp_addr_len);
if (cli_connect < 0) {
perror("connect");
return -2;
} else {
printf("connected\n");
}
while (1) {
send_data(buffer);
fds[0].fd = client_fd;
fds[0].events = POLLIN;
ret = poll(fds, 2, -1);
if (ret == -1) {
perror("poll");
break;
}
if (fds[0].revents & POLLIN) {
recv_data(buffer);
}
}
(void)close(client_fd);
return 0;
}
1$ gcc -o client client.c
2
3$ sudo ./client 8080 ::1
4
5Port: 8080
6IP Address: 127.0.0.1
7connected
8sentbuffer = HI
9Received: HELLO
10sentbuffer = HI
11Received: HELLO
12sentbuffer = HI
13Received: HELLO
14sentbuffer = HI
15Received: HELLO
16sentbuffer = HI
17Received: HELLO
18sentbuffer = HI
19Received: HELLO
20sentbuffer = HI
21Received: HELLO
22^CCaught sigINT!
$ sudo ./server 8080 ::1
$ sudo ./client 8080 ::1
program to run with elevated privileges, listen on port 8080, and bind to the loopback address ::1.
<port_number> <ip_address> decided by the user based on the connection.
Default Domain:
By default, the socket is configured to work in the
AF_INET6
domain, handling all types of network data.
Additional Domain Support:
We expand the socket’s capabilities to also function in the
PF_INET6
domain, allowing it to operate similarly toAF_INET6
.
Socket Creation:
We set up a network connection point known as a socket using
socket(PF_INET6, SOCK_STREAM, IPPROTO_TCP)
.
Working Scenario:
Despite the change in domain to
PF_INET6
, the socket continues to operate the same way, handling general network data.
Socket API |
Learning |
---|---|
socket |
Create a new socket |
bind |
Associate the socket with a specific address and port |
listen |
Set up a socket to accept incoming connections. |
connect |
Establish a connection from a client to a server. |
accept |
Server side to accept a connection request from a client. |
poll |
Monitor multiple file descriptors (usually sockets) for read, write, or error conditions. |
recv |
Receive data from a connected socket. |
send |
Send data over a connected socket. |
previous topic
current topic
Next topic
Other sockets
Other IPCs